Słowa kluczowe:
FEGT
CKTI
Grate boilers calculations
Furnace

In the paper the methodology of furnace exit gas temperature calculations by using well known normative standard method CKTI is presented. There are shown changes in methodology approach for three editions of it and in additional developments. Furnace exit gas temperature for two stoker grate boilers is calculated. By using described methods, it was possible to determine their effectiveness by comparing with measurements. Knowledge of the furnace exit gas temperature allows to define the division into irradiated and convection surfaces, which has an impact on the design features of the boiler as well as its dimensions and weight.

Przejdź do artykułu
[1] Kashnikov S.P., Tsygankov V.N.: Calculation of Boiler Units. In Examples and Problems. Gosenergoizdat, Moscow 1951 (in Russian).

[2] Kuznetsov N.V., Mitor V.V., Dubovsky I.E., Karasina E.S. (Eds.): Thermal Calculation of Boiler Units. Normative Method (2nd Edn.). Energia, Moscow 1973 (in Russian).

[3] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces. Energoatomizdat, Moscow 1984 (in Russian).

[4] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces, Springer Verlag, 1988.

[5] Kagan G.M.: Thermal Calculation of Boilers. Normative Method (3rd Edn.). NPO CKTI, Sankt-Peterburg 1998 (in Russian).

[6] Ye Weijie, Cheng Leming (Eds.): Thermal Calculation Method for Grate-Firing and Fluidized Bed Industrial Boiler, General Methods of Calculation and Design for Industrial Boiler. Standards Press, Bejing 2003 (in Chinese).

[7] Zhang Y.: Theory and Calculation of Heat Transfer in Furnaces. Elsevier, 2016.

[8] Kamenetskii B.Ya.: Applicability of the standard method for calculating heat transfer in furnaces with stokers. Therm. Eng. 53(2006), 2, 138–142.

[9] Kamenetskii B.Ya.: Calculation of heat transfer in boiler furnaces during firing of fuel in a bed. Therm. Eng. 55(2008), 5, 442–445.

[10] EN 12952-15. Water tube boilers and auxiliary installations – Part 15: Acceptance tests.

[11] EN ISO 9001:2015. Quality management systems – Requirements.

[12] EN ISO 14001:2015. Environmental management systems. Requirements with guidance for use.

[13] PN-N-18001:2004. Occupational health and safety management systems – Requirements

Przejdź do artykułu
[2] Kuznetsov N.V., Mitor V.V., Dubovsky I.E., Karasina E.S. (Eds.): Thermal Calculation of Boiler Units. Normative Method (2nd Edn.). Energia, Moscow 1973 (in Russian).

[3] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces. Energoatomizdat, Moscow 1984 (in Russian).

[4] Blokh A.G.: Heat Transfer in Steam Boiler Furnaces, Springer Verlag, 1988.

[5] Kagan G.M.: Thermal Calculation of Boilers. Normative Method (3rd Edn.). NPO CKTI, Sankt-Peterburg 1998 (in Russian).

[6] Ye Weijie, Cheng Leming (Eds.): Thermal Calculation Method for Grate-Firing and Fluidized Bed Industrial Boiler, General Methods of Calculation and Design for Industrial Boiler. Standards Press, Bejing 2003 (in Chinese).

[7] Zhang Y.: Theory and Calculation of Heat Transfer in Furnaces. Elsevier, 2016.

[8] Kamenetskii B.Ya.: Applicability of the standard method for calculating heat transfer in furnaces with stokers. Therm. Eng. 53(2006), 2, 138–142.

[9] Kamenetskii B.Ya.: Calculation of heat transfer in boiler furnaces during firing of fuel in a bed. Therm. Eng. 55(2008), 5, 442–445.

[10] EN 12952-15. Water tube boilers and auxiliary installations – Part 15: Acceptance tests.

[11] EN ISO 9001:2015. Quality management systems – Requirements.

[12] EN ISO 14001:2015. Environmental management systems. Requirements with guidance for use.

[13] PN-N-18001:2004. Occupational health and safety management systems – Requirements

Słowa kluczowe:
Thermal radiation
Passive cooling
Vehicle Skylight
greenhouse effect
Computational Fluid Dynamics

One of the most energy-intensive activities for a vehicle is space air conditioning, for either cooling or heating. Considerable energy savings can be achieved if this can be decoupled from the use of fuel or electricity. This study analyzes the opportunities and effectiveness of deploying the concept of passive cooling through the atmospheric window (i.e. the 8– 14 nm wavelength range where the atmosphere is transparent for thermal radiation) for vehicle temperature control. Recent work at our institute has resulted in a skylight (roof window) design for passive cooling of building space. This should be applicable to vehicles as well, using the same materials and design concept. An overall cooling effect is obtained if outgoing (long wavelength greater than 4 nm) thermal radiation is stronger than the incoming (short wavelength less than 4 nm) thermal radiation. Of particular interest is to quantify the passive cooling of a vehicle parked under direct/indirect sunlight equipped with a small skylight, designed based on earlier designs for buildings. The work involved simulations using commercial computational fluid dynamics software implementing (where possible) wavelengthdependency of thermal radiation properties of materials involved. The findings show that by the use of passive cooling, a temperature difference of up to 7–8 K is obtained with an internal gas flow rate of 0.7 cm/s inside the skylight. A passive cooling effect of almost 27 W/m2 is attainable for summer season in Finland. Comparison of results from Ansys Fluent and COMSOL models shows differences up to about 10 W/m2 in the estimations.

Przejdź do artykułu
[1] Welstand J.S., Haskew H.H., Gunst R.F., Bevilacqua O.M.: Evaluation of the effects of air conditioning operation and associated environmental conditions on vehicle emissions and fuel economy. SAE Tech. Pap. (2003), 2003-01-2247.

[2] Lambert M.A., Jones B.J.: Automotive adsorption air conditioner powered by exhaust heat. Part 1: Conceptual and embodiment design. P.I. Mech. Eng. D-J. Aut. Eng. Vol. 220(2006), 7, 959–972.

[3] Johnson V.H.: Fuel used for vehicle air conditioning: A state-by-state thermal comfort-based approach. SAE Tech. Pap. (2002), 2002-01-1957.

[4] Fayazbakhsh M., Bahrami M.: Comprehensive modeling of vehicle air conditioning loads using heat balance method. SAE Tech. Pap. (2013), 2013-01-1507.

[5] Zevenhoven R., Fält M.: Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach. Energy 152(2018), 27–33.

[6] Zevenhoven R., Fält M., Gomes L.P.: Thermal radiation heat transfer: Including wavelength dependence into modelling. Int. J. Therm. Sci. 86(2014), 189–197.

[7] Fält M., Pettersson F.: Modified predator-prey algorithm approach to designing a cooling or insulating skylight. Build. Environ. 126(2017), 331-338.

[8] Fält M.: The utilisation of participating gases and long-wave thermal radiation in a passive cooling skylight. PhD thesis. Åbo Akademi, Turku 2016.

[9] Kuczynski P., Białecki R.: Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries. Arch. Thermodyn. 35(2014), 2, 65–92.

[10] Hanjalic K., Kenjereš S., Tummers M.J., Jonker H.J.J.: Analysis and Modelling of Physical Transport Phenomena. VSSD, Delft 2009.

[11] Bielinski H., Mikielewicz J.: Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side. Arch. Thermodyn. 31(2010), 4, 51–59.

[12] www.comsol.fi (accessed 20 June 2020).

[13] https://www.ansys.com/products/fluids/ansys-fluent (accessed 20 June 2020).

[14] Finnish Meteorological Institute. Weather and sea / Local weather. https://en.ilmatieteenlaitos.fi/weather/turku (accessed 2 Aug. 2018).

[15] Zevenhoven R., Fält M.: Heat flow control and energy recovery using carbon dioxide in double glass arrangements. In: Proc. ASME 2010 4th Int. Conf. on Energy Sustainability, Volume 2. Phoenix, May 17-22, 2010, 201–206 (ES2010-90189).

[16] Cucumo M., De Rosa A., Marinelli V.: Experimental testing of correlations to calculate the atmospheric “transparency window” emissivity coefficient. Sol. Energy 80(2006), 8, 1031–1038.

[17] Meinel A.B., Meinel M.P.: Applied Solar Energy. An Introduction. Addison- Wesley, 1977.

[18] Opto-Technological Laboratory (LLC Opto-TL). Zinc Sulfide ZnS Cleartran https://optotl.com/upload/pdf_en/zns_cleartnan.pdf (accessed 20 June 2020).

[19] https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htm (accessed 17 Aug. 2020).

[20] Siegel R. Howell J.R.: Thermal Radiation Heattransfer (3rd Edn.). Hemisphere, Washington, DC 1992.

Przejdź do artykułu
[2] Lambert M.A., Jones B.J.: Automotive adsorption air conditioner powered by exhaust heat. Part 1: Conceptual and embodiment design. P.I. Mech. Eng. D-J. Aut. Eng. Vol. 220(2006), 7, 959–972.

[3] Johnson V.H.: Fuel used for vehicle air conditioning: A state-by-state thermal comfort-based approach. SAE Tech. Pap. (2002), 2002-01-1957.

[4] Fayazbakhsh M., Bahrami M.: Comprehensive modeling of vehicle air conditioning loads using heat balance method. SAE Tech. Pap. (2013), 2013-01-1507.

[5] Zevenhoven R., Fält M.: Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach. Energy 152(2018), 27–33.

[6] Zevenhoven R., Fält M., Gomes L.P.: Thermal radiation heat transfer: Including wavelength dependence into modelling. Int. J. Therm. Sci. 86(2014), 189–197.

[7] Fält M., Pettersson F.: Modified predator-prey algorithm approach to designing a cooling or insulating skylight. Build. Environ. 126(2017), 331-338.

[8] Fält M.: The utilisation of participating gases and long-wave thermal radiation in a passive cooling skylight. PhD thesis. Åbo Akademi, Turku 2016.

[9] Kuczynski P., Białecki R.: Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries. Arch. Thermodyn. 35(2014), 2, 65–92.

[10] Hanjalic K., Kenjereš S., Tummers M.J., Jonker H.J.J.: Analysis and Modelling of Physical Transport Phenomena. VSSD, Delft 2009.

[11] Bielinski H., Mikielewicz J.: Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side. Arch. Thermodyn. 31(2010), 4, 51–59.

[12] www.comsol.fi (accessed 20 June 2020).

[13] https://www.ansys.com/products/fluids/ansys-fluent (accessed 20 June 2020).

[14] Finnish Meteorological Institute. Weather and sea / Local weather. https://en.ilmatieteenlaitos.fi/weather/turku (accessed 2 Aug. 2018).

[15] Zevenhoven R., Fält M.: Heat flow control and energy recovery using carbon dioxide in double glass arrangements. In: Proc. ASME 2010 4th Int. Conf. on Energy Sustainability, Volume 2. Phoenix, May 17-22, 2010, 201–206 (ES2010-90189).

[16] Cucumo M., De Rosa A., Marinelli V.: Experimental testing of correlations to calculate the atmospheric “transparency window” emissivity coefficient. Sol. Energy 80(2006), 8, 1031–1038.

[17] Meinel A.B., Meinel M.P.: Applied Solar Energy. An Introduction. Addison- Wesley, 1977.

[18] Opto-Technological Laboratory (LLC Opto-TL). Zinc Sulfide ZnS Cleartran https://optotl.com/upload/pdf_en/zns_cleartnan.pdf (accessed 20 June 2020).

[19] https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htm (accessed 17 Aug. 2020).

[20] Siegel R. Howell J.R.: Thermal Radiation Heattransfer (3rd Edn.). Hemisphere, Washington, DC 1992.

Słowa kluczowe:
Thermal power plant
Steam condenser
Condenser model
Steam condensation pressure
Reference parameters
Steam condenser effectiveness

The paper presents formulas which can be used to determine steam condensation pressure in a power plant condenser in off-design conditions. The mathematical model provided in the paper makes it possible to calculate the performance of the condenser in terms of condensing steam pressure, cooling water temperature at the condenser outlet, and condenser effectiveness under variable load conditions as a function of three input properties: the temperature and the mass flow rate of cooling water at the condenser inlet and the mass flow rate of steam. The mathematical model takes into account values of properties occurring in reference conditions but it contains no constant coefficients which would have to be established based on data from technical specifications of a condenser or measurement data. Since there are no such constant coefficients, the model of the steam condenser proposed in the paper is universally applicable. The proposed equations were checked against warranty measurements made in the condenser and measurement data gathered during the operation of a 200 MW steam power unit. Based on the analysis, a conclusion may be drawn that the proposed means of determining pressure in a condenser in off-design conditions reflects the condenser performance with sufficient accuracy. This model can be used in optimization and diagnostic analyses of the performance of a power generation unit.

Przejdź do artykułu
[1] Salij A., Stepien J.C.: Performance of Turbine Condensers in Power Units of Thermal Systems. Kaprint, Warsaw 2013 (in Polish).

[2] Rusowicz A.: Issues Concerning Mathematical Modelling of Power Condensers. Warsaw University of Technology, Warsaw 2013 (in Polish).

[3] Grzebielec A., Rusowicz A.: Thermal resistance of steam condensation in horizontal tube bundles. J. Power Technol. 91(2011), 1, 41–48.

[4] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: Selection of cooling water mass flow rate at variable load for 200 MW power unit. Rynek Energii (2020), 3,41– 46 (in Polish).

[5] Durmayaz A., Sogut O. S.: In?uence of cooling water temperature on the e?ciency of a pressurized-water reactor nuclear-power plant. Int. J. Energ. Res. 30(2006), 10, 799–810.

[6] Atria S.I.: The influence of condenser cooling water temperature on the thermal efficiency of a nuclear power plant. Ann. Nucl. Energy 80(2015), 371–378.

[7] Lakovic M.S., et.al. Stojiljkovic M.M. , Lakovic S.V., Stefanovic V.P., Mitrovic D.D.: Impact of the cold end operating conditions on energy efficiency of the steam power plants. Therm. Sci. 14(2010), Suppl., S53–S66.

[8] Laskowski R., Smyk A., Lewandowski J., Rusowicz A.: Cooperation of a steam condenser with a low-pressure part of a steam turbine in off-design conditions. Am. J. Energ. Res. 3(2015), 1, 13–18.

[9] Cengel Y.A.: Heat Transfer. McGraw-Hill, 1998.

[10] Holman J.P.: Heat Transfer. McGraw-Hill, New York 2002.

[11] Weber G.E., Worek W.M.: Development of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 116(1994), 2, 434–441.

[12] Weber G.E., Worek W.M.: The application of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 117(1995), 2, 384–387.

[13] Szkłowier G.G., Milman O.O.: Research and Calculations of Condensing Systems of Steam Turbines. Energoatomizdat, Moskwa 1985 (in Russian).

[14] Pattanayak L., Padhi B.N., Kodamasingh B.: Thermal performance assessment of steam surface condenser. Case Stud. Therm. Eng. 14(2019), 100484.

[15] Beckman G., Heil G.: Mathematische Modelle für die Beurteilung von Kraftwerksprozessen. EKM Mitteillungen (1965), 10.

[16] Laskowski R., Lewandowski J.: Simplified and approximated relations of heat transfer effectiveness for a steam condenser. J. Power Technol. 92(2012), 4, 258– 265.

[17] Laskowski R.M.: A mathematical model of the steam condenser in the changed conditions. J. Power Technol. 92(2012), 2, 101–108.

[18] Szapajko G., Rusinowski H.: Empirical modelling of heat exchangers in a CHP plant with bleed-condensing turbine. Arch. Thermodyn. 29(2008), 4, 177–184.

[19] Szapajko G., Rusinowski H.: Mathematical modelling of steam–water cycle with auxiliary empirical functions application. Arch. Thermodyn. 31(2010), 2, 165–183.

[20] Bahadori A.: Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers. Appl. Energ. 88(2011), 11, 4191–4196.

[21] Vera-García F., García-Cascales J.R., Gonzálvez-Maciá J., Cabello R., Llopis R., Sanchez D., Torrella E.: A simplified model for shell-and-tubes heat exchangers: practical application. Appl. Therm. Eng. 30(2010), 10, 1231–1241.

[22] Patrascioiu C., Radulescu S.: Modeling and simulation of the double tube heat exchanger. Case studies. Advances in Fluid Mechanics & Heat & Mass Transfer (P. Mastny, V. Perminov, Eds.). In: Proc. 10th WSEAS Int. Conf. on Heat Transfer, Thermal Engineering and Environment (HTE ’12) and Proc. 10th WSEAS Int. Conf. on Fluid Mechanics & Aerodynamics (FMA ’12), Istanbul, Aug. 21–23, 2012, WSEAS, 2012, 35–41.

[23] Patrascioiu C., Radulescu S.: Prediction of the outlet temperatures in triple concentric-tube heat exchangers in laminar flow regime: case study. Heat Mass Transfer 51(2015), 59–66.

[24] Laskowski R.: The black box model of a double-tube counter-flow heat exchanger. Heat Mass Transfer (2014), 10.1007/s00231-014-1482-2.

[25] Chmielniak T., Trela M., Eds.: Diagnostics of New-Generation Thermal Power Plants. Wyd. IMP PAN, Gdansk 2008.

[26] Butrymowicz D., Trela M.: Influence of fouling and inert gases on the performance of regenerative feedwater heaters. Arch. Thermodyn. 23(2002), 1-2, 127–140.

[27] Badur J., Kowalczyk T., Ziółkowski P., Tokarczyk P., Wozniak M.: Study of the effectiveness of the turbine condenser air extraction system using hydro ejectors. Trans. Inst. Fluid-Flow Mach. 131(2016), 41–53.

[28] Tokarczyk P.,Woznizk M., Badur J., Kowalczyk T., Ziółkowski P.: Issue of the temperature of water supplied to hydro ejector and its influence on performance of steam turbine condenser. Energetyka 70(2017), 10 (in Polish).

[29] HEI Standards for Steam Surface Condensers (11th Edn.). Heat Exchange Institute, Cleveland 2012.

[30] Prieto M.M., Suárez I.M., Montanés E.: Analysis of the thermal performance of a church window steam condenser for different operational conditions using three models. Appl. Therm. Eng. 23(2003), 2, 163–178.

[31] Wróblewski W., Dykas S., Rulik S.: Selection of the cooling system configuration for an ultra-critical coal-fired power plant. Energ. Convers. Manage. 76(2013), 554– 560.

[32] Jian-qun Xu, Tao Yang, You-yuan Sun, Ke-yi Zhou, Yong-feng Shi: Research on varying condition characteristic of feedwater heater considering liquid level. Appl. Therm. Eng., 67 (2014), 179–189.

[33] Laskowski R.: Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions. Appl. Therm. Eng. 104(2016), 528–536.

[34] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: A useful formulas to describe the performance of a steam condenser in off-design conditions. Energy 204(2020) 117910.

[35] Wagner W., Kretzschmar H.J.: International Steam Tables – Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. Springer, 2008.

Przejdź do artykułu
[2] Rusowicz A.: Issues Concerning Mathematical Modelling of Power Condensers. Warsaw University of Technology, Warsaw 2013 (in Polish).

[3] Grzebielec A., Rusowicz A.: Thermal resistance of steam condensation in horizontal tube bundles. J. Power Technol. 91(2011), 1, 41–48.

[4] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: Selection of cooling water mass flow rate at variable load for 200 MW power unit. Rynek Energii (2020), 3,41– 46 (in Polish).

[5] Durmayaz A., Sogut O. S.: In?uence of cooling water temperature on the e?ciency of a pressurized-water reactor nuclear-power plant. Int. J. Energ. Res. 30(2006), 10, 799–810.

[6] Atria S.I.: The influence of condenser cooling water temperature on the thermal efficiency of a nuclear power plant. Ann. Nucl. Energy 80(2015), 371–378.

[7] Lakovic M.S., et.al. Stojiljkovic M.M. , Lakovic S.V., Stefanovic V.P., Mitrovic D.D.: Impact of the cold end operating conditions on energy efficiency of the steam power plants. Therm. Sci. 14(2010), Suppl., S53–S66.

[8] Laskowski R., Smyk A., Lewandowski J., Rusowicz A.: Cooperation of a steam condenser with a low-pressure part of a steam turbine in off-design conditions. Am. J. Energ. Res. 3(2015), 1, 13–18.

[9] Cengel Y.A.: Heat Transfer. McGraw-Hill, 1998.

[10] Holman J.P.: Heat Transfer. McGraw-Hill, New York 2002.

[11] Weber G.E., Worek W.M.: Development of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 116(1994), 2, 434–441.

[12] Weber G.E., Worek W.M.: The application of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 117(1995), 2, 384–387.

[13] Szkłowier G.G., Milman O.O.: Research and Calculations of Condensing Systems of Steam Turbines. Energoatomizdat, Moskwa 1985 (in Russian).

[14] Pattanayak L., Padhi B.N., Kodamasingh B.: Thermal performance assessment of steam surface condenser. Case Stud. Therm. Eng. 14(2019), 100484.

[15] Beckman G., Heil G.: Mathematische Modelle für die Beurteilung von Kraftwerksprozessen. EKM Mitteillungen (1965), 10.

[16] Laskowski R., Lewandowski J.: Simplified and approximated relations of heat transfer effectiveness for a steam condenser. J. Power Technol. 92(2012), 4, 258– 265.

[17] Laskowski R.M.: A mathematical model of the steam condenser in the changed conditions. J. Power Technol. 92(2012), 2, 101–108.

[18] Szapajko G., Rusinowski H.: Empirical modelling of heat exchangers in a CHP plant with bleed-condensing turbine. Arch. Thermodyn. 29(2008), 4, 177–184.

[19] Szapajko G., Rusinowski H.: Mathematical modelling of steam–water cycle with auxiliary empirical functions application. Arch. Thermodyn. 31(2010), 2, 165–183.

[20] Bahadori A.: Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers. Appl. Energ. 88(2011), 11, 4191–4196.

[21] Vera-García F., García-Cascales J.R., Gonzálvez-Maciá J., Cabello R., Llopis R., Sanchez D., Torrella E.: A simplified model for shell-and-tubes heat exchangers: practical application. Appl. Therm. Eng. 30(2010), 10, 1231–1241.

[22] Patrascioiu C., Radulescu S.: Modeling and simulation of the double tube heat exchanger. Case studies. Advances in Fluid Mechanics & Heat & Mass Transfer (P. Mastny, V. Perminov, Eds.). In: Proc. 10th WSEAS Int. Conf. on Heat Transfer, Thermal Engineering and Environment (HTE ’12) and Proc. 10th WSEAS Int. Conf. on Fluid Mechanics & Aerodynamics (FMA ’12), Istanbul, Aug. 21–23, 2012, WSEAS, 2012, 35–41.

[23] Patrascioiu C., Radulescu S.: Prediction of the outlet temperatures in triple concentric-tube heat exchangers in laminar flow regime: case study. Heat Mass Transfer 51(2015), 59–66.

[24] Laskowski R.: The black box model of a double-tube counter-flow heat exchanger. Heat Mass Transfer (2014), 10.1007/s00231-014-1482-2.

[25] Chmielniak T., Trela M., Eds.: Diagnostics of New-Generation Thermal Power Plants. Wyd. IMP PAN, Gdansk 2008.

[26] Butrymowicz D., Trela M.: Influence of fouling and inert gases on the performance of regenerative feedwater heaters. Arch. Thermodyn. 23(2002), 1-2, 127–140.

[27] Badur J., Kowalczyk T., Ziółkowski P., Tokarczyk P., Wozniak M.: Study of the effectiveness of the turbine condenser air extraction system using hydro ejectors. Trans. Inst. Fluid-Flow Mach. 131(2016), 41–53.

[28] Tokarczyk P.,Woznizk M., Badur J., Kowalczyk T., Ziółkowski P.: Issue of the temperature of water supplied to hydro ejector and its influence on performance of steam turbine condenser. Energetyka 70(2017), 10 (in Polish).

[29] HEI Standards for Steam Surface Condensers (11th Edn.). Heat Exchange Institute, Cleveland 2012.

[30] Prieto M.M., Suárez I.M., Montanés E.: Analysis of the thermal performance of a church window steam condenser for different operational conditions using three models. Appl. Therm. Eng. 23(2003), 2, 163–178.

[31] Wróblewski W., Dykas S., Rulik S.: Selection of the cooling system configuration for an ultra-critical coal-fired power plant. Energ. Convers. Manage. 76(2013), 554– 560.

[32] Jian-qun Xu, Tao Yang, You-yuan Sun, Ke-yi Zhou, Yong-feng Shi: Research on varying condition characteristic of feedwater heater considering liquid level. Appl. Therm. Eng., 67 (2014), 179–189.

[33] Laskowski R.: Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions. Appl. Therm. Eng. 104(2016), 528–536.

[34] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: A useful formulas to describe the performance of a steam condenser in off-design conditions. Energy 204(2020) 117910.

[35] Wagner W., Kretzschmar H.J.: International Steam Tables – Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. Springer, 2008.

Słowa kluczowe:
Steam turbine
Wet steam loss
Non-equilibrium condensation
CFD

The paper deals with the wet steam flow in a steam turbine operating in a nuclear power plant. Using a pneumatic and an optical probe, the static pressure, steam velocity, steam wetness and the fine water droplets diameter spectra were measured before and beyond the last turbine low-pressure stage. The results of the experiment serve to understand better the wet steam flow and map its liquid phase in this area. The wet steam data is also used to modify the condensation model used in computational fluid dynamics simulations. The condensation model, i.e. the nucleation rate and the growth rate of the droplets, is adjusted so that results of the numerical simulations are in a good agreement with the experimental results. A 3D computational fluid dynamics simulations was performed for the lowpressure part of the turbine considering non-equilibrium steam condensation. In the post-processing of the of the numerical calculation result, the thermodynamic wetness loss was evaluated and analysed. Loss analysis was performed for the turbine outputs of 600, 800, and 1100 MW, respectively.

Przejdź do artykułu
[1] Walters P.T., Skingley P.C.: An optical instrument for measuring the wetness fraction and droplet size of wet steam flow in LP turbines. In: Proc. Conf. on Steam Turbines for the 1980s, Vol. 12, London, 9–12 Oct. 1979, C141, 337–348.

[2] Kleitz A., Laali, A.R., Courant J.J.: Fog droplet size measurement and calculation in wet steam turbines. In: Proc. Int. Conf. on Technology of Turbine Plant Operating in Wet Steam (J.M. Mitchell, Ed.), London, 11–13 October 1988, 201– 206.

[3] Petr V., Kolovratník M.: Modelling of the droplet size distribution in LP steam turbine. In: Proc. 3rd Eur. Conf. on Turbomachinery – B, Fluid Dynamics and Thermodynamics, London, 2–5 March 1999, 771–782.

[4] Starzmann J., Schatz M., Casey M.V., Mayer J.F., Sieverding F.: Modelling and validation of wet steam flow in a low pressure steam turbine. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10, 2011, GT2011-45672, 2335–2346.

[5] Hideaki S., Tabata S. Tochitani N., Sasao Y., Takata R., Osako M.: Investigation of moisture removal on last stage stationary blade in actual steam turbine. In: Proc. ASME Turbo Expo 2020, virtual, online, Sept. 21–25, 2020, GT2020-14831.

[6] Grübel M., Starzmann J., Schatz M., Eberle T., Vogt D.M., Sieverding F.: Two-phase flow modeling and measurements in low-pressure turbines – Part I: numerical validation of wet steam models and turbine modeling. J. Eng. Gas Turbines Power 137(2015), 4, 042602 (11), GTP-14-1442.

[7] Starzmann J., Hughes F. R., White, A., et al.: Results of the International Wet Steam Modelling Project. In: Proc. Wet Steam Conference. Prague, Sept. 12–14, 2016.

[8] Fendler Y., Dorey J.M., Stanciu M., Lance M., Léonard O.: developments for modeling of droplets deposition and liquid film flow in a throughflow code for steam turbines. In: Proc. ASME Turbo Expo 2012, Copenhagen, June 11–15, 2012, GT2012-68968, 537–547.

[9] Gyarmathy G.: Grundlagen einer Theorie der Nassdampfturbine. PhD thesis, ETH Zurich, Juris-Verlag, Zurich 1962.

[10] Laali A.R.: A new approach for assessment of the wetness losses in steam turbines. In Proc. IMechE Conf. Turbomachinery – Latest Developments in a Changing Scene, London, March, 1991, 155–166.

[11] Wróblewski W, Chmielniak T., Dykas S.: Models for water steam condensing flows. Arch. Thermodyn. 41 (2020), 4, 63–92.

[12] Petr V., Kolovratník M.: Wet steam energy loss and related Baumann rule in low pressure steam turbines. P. I. Mech. Eng. A-J. Pow. 228(2014), 2, 206–215.

[13] Holmberg H., Ruohonen P., Ahtila P.: Determination of the real loss of power for a condensing and a backpressure turbine by means of second law analysis. Entropy 11 (2009), 4, 702–712.

[14] Gardzilewicz A.: Evaluating the efficiency of low pressure part of steam turbines based on probing measurements. Trans. Inst. Fluid-Flow Mach. 135(2017), 41–56.

[15] Míšek T., Kubín Z.: Static and dynamic analysis of 1 220 mm steel last stage blade for steam turbine. Appl. Comput. Mech. 3(2009), 1, 133–140.

[16] Luxa M. Safarík P., Synác J., Rudas B.: High-speed aerodynamic investigation of the midsection of a 48” rotor blade for the last stage of steam turbine. In: Proc: 10th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC10, Lappeenranta, Apr. 15–19, 2013, ETC2013-116.

[17] Finzel C., Schatz M., Casey M.V., Gloss D.: Experimental investigation of geometrical parameters on the pressure recovery of low pressure steam turbine exhaust hoods. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10 2011, GT2011- 45302, 2255–2263.

[18] Jones M., Crossland R.: performance improvements of nuclear power plants by the application of longer LP last stage blades and advanced design techniques. In: ASME Power Conf., Baltimore, June 28–31, 2014; POWER2014-32072, V001T04A002.

[19] Hoznedl M., Kolovratník M., Bartoš O., Sedlák K., Kalista R., Mrózek L.: Experimental research on the flow at the last stage of a 1090 MW steam turbine. P. I. Mech. Eng. A-J. Pow 232(2018), 5, 515–524.

[20] Štastný M.: Flow field in the last steam turbine stage. In: Proc. 7th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics , Euroturbo 7, Athens, March 5–9, 2007, 867–876.

[21] Kolovratník M., Bartoš O.: CTU optical probes for liquid phase detection in the 1000 MW steam turbine. In: Proc. EFM14 – Experimental Fluid Mechanics 2014, EPJ Web Conf. 92(2015), 02035.

[22] Brüggemann C., Schatz M., Vogt D.M., Popig F.: A numerical investigation of the impact of part-span connectors on the flow field in a linear cascade. In: Proc.ASME Turbo Expo 2017, Charlotte, June 26–30, 2017, GT2017-63359, V02AT40A005.

[23] Radnic T., Hála J., Luxa M., Šimurda D., Fürst J., Hasnedl D., Kellner, J.: Aerodynamic effects of tie-boss in extremely long turbine blades. ASME J. Eng. Gas Turbines Power. 140(2018), 11: 112604, GTP-17-1218.

[24] Häfele M. Traxinger C., Grübel M., Schatz M., Vog D.M., Drozdowski R.: Experimental and numerical investigation of the flow in a low-lressure industrial steam turbine with part-span connectors. In: Proc. ASME Turbo Expo 2015: Montreal. June 15–19, 2015, GT2015-42202, V008T26A005.

[25] Young J.B.: Spontaneous condensation of Steam in Supersonic Nozzles. 1980STIN...8113306Y, Whittle laboratory, Cambridge University, 1980

[26] Gerber A.G. Kermani M.J.: A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int. J. Heat Mass Tran. 47(2004), 10–11, 2217–2231.

[27] Hill P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25(1966), 3, 593–620.

[28] Ansys CFX. https://www.ansys.com/products/fluids/ansys-cfx (accessed 5 March 2021).

[29] The International Association for the Properties of Water and Steam. Revised Release on the IAPWS-97 Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/relguide/IF97-Rev.html (accessed 15 Sept. 2020).

[30] Sova L., Jun G., Štastný M.: Modifications of steam condensation model implemented in commercial solver. AIP Conf. Proc. 1889(2017), 020039-1–020039-8.

[31] Petr V., Kolovratník M.: Heterogeneous effects in the droplet nucleation process in LP steam turbines. In: Proc. 4th Eur. Conf. on Turbomachinery Flud Dynamics and Thermodynamics (G. Bois, R. Decuypere, F. Martelli, Eds.), Firenze, 2001, 783–792.

[32] Baumann K.: Some recent developments in large steam turbine practice. J. Inst. Electr. Eng., 59(1921), 565–623.

[33] Moore M.J.: Gas dynamics of wet steam and energy losses in wet-steam turbines. In: Two-Phase Steam Flow in Turbines and Separators (M.J. Moore, C.H. Sieverding, Eds.). Hemisphere, Washington 1976, 59–126.

Przejdź do artykułu
[2] Kleitz A., Laali, A.R., Courant J.J.: Fog droplet size measurement and calculation in wet steam turbines. In: Proc. Int. Conf. on Technology of Turbine Plant Operating in Wet Steam (J.M. Mitchell, Ed.), London, 11–13 October 1988, 201– 206.

[3] Petr V., Kolovratník M.: Modelling of the droplet size distribution in LP steam turbine. In: Proc. 3rd Eur. Conf. on Turbomachinery – B, Fluid Dynamics and Thermodynamics, London, 2–5 March 1999, 771–782.

[4] Starzmann J., Schatz M., Casey M.V., Mayer J.F., Sieverding F.: Modelling and validation of wet steam flow in a low pressure steam turbine. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10, 2011, GT2011-45672, 2335–2346.

[5] Hideaki S., Tabata S. Tochitani N., Sasao Y., Takata R., Osako M.: Investigation of moisture removal on last stage stationary blade in actual steam turbine. In: Proc. ASME Turbo Expo 2020, virtual, online, Sept. 21–25, 2020, GT2020-14831.

[6] Grübel M., Starzmann J., Schatz M., Eberle T., Vogt D.M., Sieverding F.: Two-phase flow modeling and measurements in low-pressure turbines – Part I: numerical validation of wet steam models and turbine modeling. J. Eng. Gas Turbines Power 137(2015), 4, 042602 (11), GTP-14-1442.

[7] Starzmann J., Hughes F. R., White, A., et al.: Results of the International Wet Steam Modelling Project. In: Proc. Wet Steam Conference. Prague, Sept. 12–14, 2016.

[8] Fendler Y., Dorey J.M., Stanciu M., Lance M., Léonard O.: developments for modeling of droplets deposition and liquid film flow in a throughflow code for steam turbines. In: Proc. ASME Turbo Expo 2012, Copenhagen, June 11–15, 2012, GT2012-68968, 537–547.

[9] Gyarmathy G.: Grundlagen einer Theorie der Nassdampfturbine. PhD thesis, ETH Zurich, Juris-Verlag, Zurich 1962.

[10] Laali A.R.: A new approach for assessment of the wetness losses in steam turbines. In Proc. IMechE Conf. Turbomachinery – Latest Developments in a Changing Scene, London, March, 1991, 155–166.

[11] Wróblewski W, Chmielniak T., Dykas S.: Models for water steam condensing flows. Arch. Thermodyn. 41 (2020), 4, 63–92.

[12] Petr V., Kolovratník M.: Wet steam energy loss and related Baumann rule in low pressure steam turbines. P. I. Mech. Eng. A-J. Pow. 228(2014), 2, 206–215.

[13] Holmberg H., Ruohonen P., Ahtila P.: Determination of the real loss of power for a condensing and a backpressure turbine by means of second law analysis. Entropy 11 (2009), 4, 702–712.

[14] Gardzilewicz A.: Evaluating the efficiency of low pressure part of steam turbines based on probing measurements. Trans. Inst. Fluid-Flow Mach. 135(2017), 41–56.

[15] Míšek T., Kubín Z.: Static and dynamic analysis of 1 220 mm steel last stage blade for steam turbine. Appl. Comput. Mech. 3(2009), 1, 133–140.

[16] Luxa M. Safarík P., Synác J., Rudas B.: High-speed aerodynamic investigation of the midsection of a 48” rotor blade for the last stage of steam turbine. In: Proc: 10th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC10, Lappeenranta, Apr. 15–19, 2013, ETC2013-116.

[17] Finzel C., Schatz M., Casey M.V., Gloss D.: Experimental investigation of geometrical parameters on the pressure recovery of low pressure steam turbine exhaust hoods. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10 2011, GT2011- 45302, 2255–2263.

[18] Jones M., Crossland R.: performance improvements of nuclear power plants by the application of longer LP last stage blades and advanced design techniques. In: ASME Power Conf., Baltimore, June 28–31, 2014; POWER2014-32072, V001T04A002.

[19] Hoznedl M., Kolovratník M., Bartoš O., Sedlák K., Kalista R., Mrózek L.: Experimental research on the flow at the last stage of a 1090 MW steam turbine. P. I. Mech. Eng. A-J. Pow 232(2018), 5, 515–524.

[20] Štastný M.: Flow field in the last steam turbine stage. In: Proc. 7th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics , Euroturbo 7, Athens, March 5–9, 2007, 867–876.

[21] Kolovratník M., Bartoš O.: CTU optical probes for liquid phase detection in the 1000 MW steam turbine. In: Proc. EFM14 – Experimental Fluid Mechanics 2014, EPJ Web Conf. 92(2015), 02035.

[22] Brüggemann C., Schatz M., Vogt D.M., Popig F.: A numerical investigation of the impact of part-span connectors on the flow field in a linear cascade. In: Proc.ASME Turbo Expo 2017, Charlotte, June 26–30, 2017, GT2017-63359, V02AT40A005.

[23] Radnic T., Hála J., Luxa M., Šimurda D., Fürst J., Hasnedl D., Kellner, J.: Aerodynamic effects of tie-boss in extremely long turbine blades. ASME J. Eng. Gas Turbines Power. 140(2018), 11: 112604, GTP-17-1218.

[24] Häfele M. Traxinger C., Grübel M., Schatz M., Vog D.M., Drozdowski R.: Experimental and numerical investigation of the flow in a low-lressure industrial steam turbine with part-span connectors. In: Proc. ASME Turbo Expo 2015: Montreal. June 15–19, 2015, GT2015-42202, V008T26A005.

[25] Young J.B.: Spontaneous condensation of Steam in Supersonic Nozzles. 1980STIN...8113306Y, Whittle laboratory, Cambridge University, 1980

[26] Gerber A.G. Kermani M.J.: A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int. J. Heat Mass Tran. 47(2004), 10–11, 2217–2231.

[27] Hill P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25(1966), 3, 593–620.

[28] Ansys CFX. https://www.ansys.com/products/fluids/ansys-cfx (accessed 5 March 2021).

[29] The International Association for the Properties of Water and Steam. Revised Release on the IAPWS-97 Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/relguide/IF97-Rev.html (accessed 15 Sept. 2020).

[30] Sova L., Jun G., Štastný M.: Modifications of steam condensation model implemented in commercial solver. AIP Conf. Proc. 1889(2017), 020039-1–020039-8.

[31] Petr V., Kolovratník M.: Heterogeneous effects in the droplet nucleation process in LP steam turbines. In: Proc. 4th Eur. Conf. on Turbomachinery Flud Dynamics and Thermodynamics (G. Bois, R. Decuypere, F. Martelli, Eds.), Firenze, 2001, 783–792.

[32] Baumann K.: Some recent developments in large steam turbine practice. J. Inst. Electr. Eng., 59(1921), 565–623.

[33] Moore M.J.: Gas dynamics of wet steam and energy losses in wet-steam turbines. In: Two-Phase Steam Flow in Turbines and Separators (M.J. Moore, C.H. Sieverding, Eds.). Hemisphere, Washington 1976, 59–126.

Słowa kluczowe:
Heat transfer
gold nanoparticles
Glasses
Polymers
Computational Fluid Dynamics

This work aims to determine and compare heat generation and propagation of densely packed gold nanoparticles (Au NPs) induced by a resonant laser beam (532 nm) according to the Mie theory. The heat flux propagation is transferred into the materials, which here are: silica glass; soda-lime-silica glass; borosilicate glass; polymethyl methacrylate (PMMA); polycarbonate (PC); and polydimetylosiloxane (PDMS). This analysis aims to select the optimum material serving as a base for using photo-thermoablation. On the other hand, research focused only on Newtonian heat transfer in gold, not on non-Fourier ones, like the Cattaneo approach. As a simulation tool, a computational fluid dynamics code with the second-order upwind algorithm is selected. Results reveal a near-Gaussian and Gaussian temperature distribution profile during the heating and cooling processes, respectively. Dependence between the maximum temperature after irradiation and the glass thermal conductivity is observed confirming the Fourier law. Due to the maximum heating area, the borosilicate or soda-lime glass, which serves as a base, shall represent an excellent candidate for future experiments.

Przejdź do artykułu
[1] Dash S., Mohanty S., Pradhan S., Mishra B.K.: CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles. J. Taiwan Inst. Chem. Eng. 58(2016), 39–48.

[2] Paruch M., Mochnacki B.: Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput. Assist. Meth. Eng. Sci. 25(2018), 2–3, 71–80.

[3] Alia M.E., Sandeep N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys. 7(2017), 21–30.

[4] Paruch M., Majchrzak E.: The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10(2008), 2, 29–37.

[5] Feng B., Li Z., Zhang X.: Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517(2009), 8, 2803–2807.

[6] Wang B.-X., Zhou L.-P., Peng X.-F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 1(2006), 27, 139–151.

[7] Mie G.: Beträge zur Optik trüber Medien, speziell kolloidaler Metalösungen. Annalen der Physik 330(1908), 3, 377–445.

[8] Pezzi L., De Sio L. Veltri I., Placido T. et al.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic menamic liquid crystals. Phys. Chem. Chem. Phys. 17(2015), 31, 20281–20287.

[9] Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L.: Thermoplasmonics with Gold Nanoparticles: A new weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2(2021), 8, 1–17.

[10] Annesi F. et al.: Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloid. Surface. A 625(2021), 126950.

[11] Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles: Wiley-VCH, 1998.

[12] Guglielmelli A. et al.: Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 16(2021), 2, 121– 138.

[13] Black S.E.: Laser ablation: Effects and Applications. Nova Science, New York 2011.

[14] Radhakrishnan A., Murugesan V.: Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations. AIP Conf. Proc. 1620(2014), 52–57.

[15] Giannini V, Fernandez-Domínguez A.I., Heck S.C., Maier S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(2011), 6, 3888 – 3912.

[16] Louis C., Pluchery O. (Eds.): Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College, London 2012.

[17] Martin R.J.: Mie scattering formulae for non-spherical particles. J. Mod. Optic. 12(1993), 40, 2467–2494

[18] Myers T.G.: Why are the slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10(2011), 1145–1145.

[19] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(2008), 9, 2632–2637.

[20] Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. T. R. Soc. Lond. 170(1879), 231–25.

[21] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018), 1, 64–80.

[22] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conf. Proc. 2077(2019), 020065-1–020065-9.

[23] Badur J., Freidt M., Ziółkowski P.: Neoclassical Navier–Stokes equations considering the Gyftopolous–Beretta exposition of thermodynamics. Energies 13(2020), 1656, 1–32.

[24] Mikielewicz D.: Hydrodynamics and heat transfer in bubbly two-phase flows. Int. J. Heat Mass Tran. 46(2002), 2, 207–220.

[25] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409.

[26] Badur J.: Concept of Energy Evolution. Wydawn. IMP PAN, Gdansk 2009 (in Polish).

[27] Smoluchowski M.: On conduction of heat by rarefied gases. Phyl. Mag. 46(1898), 192–206.

[28] Smoluchowski M.: On conduction of heat in pulverized solids. Pol. Ac. Art. Sci. 2(1927), 1, 66–77.

[29] Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M.: Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat. Fluid. Fl. 50(2014), 114–125.

[30] Stephenson D., Lockerby D.A., Borg M.K., Reese J.M.: Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid. 18(2015), 5– 6, 841–858.

[31] Lockerby D.A., Patronis A., Borg M.K., Reese J.M.: Asynchronous coupling of hybrid models for efficient simulation of multiscale systems. J. Comput. Phys. 284(2015) 261–272.

[32] Sobieski W., Zhang Q.: Multi-scale modeling of flow resistance in granular porous media. Math. Comput. Simulat. 132(2017), 159–171.

[33] Johnson P.B., Christy R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(1972), 12, 4370–4379.

[34] Narottam P.B.: Handbook of Glass Properties. Academic Press, New York 1986.

[35] Agari Y., Ueda A., Omura Y.: Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(1997), 4, 801–807.

[36] Cahill D.G., Olson J.R., Fischer H.E., Watson S.K., Stephens R.B., Tait R.H., Ashworth T., Pohl R.O.: Thermal conductivity and specific heat of glass ceramics. Phys. Rev. B 44(1991), 22, 226–232,

[37] James E.M. (Ed.): Polymer Data Handbook. Oxford University Press (1999), 131, 363–367, 411–435, 655–657.

[38] Dixon M.C., Daniel T.A., Hieda M., Smilgies D.M., Chan M.C., Allara D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(2007), 5, 2414–2422.

[39] Harvey B.S.: Hyperthermia. New Engl. J. Med. 329(1993), 483–487.

[40] Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model withcomplete frequency redistribution. J. Quant. Spectrosc. Ra. 2(1999), 2, 665–675.

[41] Koniorczyk P., Zmywaczyk J.: Analysis of thermal conductivity reduction in grey medium using a discrete ordinate method and the Henyey–Greenstein phase function for absorbing, emitting and anisotropically scattering media. Arch. Thermodyn. 29(2008), 2, 47–60.

[42] Filkoski R.V.: Radiation heat transfer modeling and CFD analysis of pulverizedcoal combustion with staged air introduction. Arch. Thermodyn. 30(2009), 4, 97–118.

[43] Dabrowski P.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38(2017), 3, 135–148.

Przejdź do artykułu
[2] Paruch M., Mochnacki B.: Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput. Assist. Meth. Eng. Sci. 25(2018), 2–3, 71–80.

[3] Alia M.E., Sandeep N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys. 7(2017), 21–30.

[4] Paruch M., Majchrzak E.: The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10(2008), 2, 29–37.

[5] Feng B., Li Z., Zhang X.: Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517(2009), 8, 2803–2807.

[6] Wang B.-X., Zhou L.-P., Peng X.-F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 1(2006), 27, 139–151.

[7] Mie G.: Beträge zur Optik trüber Medien, speziell kolloidaler Metalösungen. Annalen der Physik 330(1908), 3, 377–445.

[8] Pezzi L., De Sio L. Veltri I., Placido T. et al.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic menamic liquid crystals. Phys. Chem. Chem. Phys. 17(2015), 31, 20281–20287.

[9] Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L.: Thermoplasmonics with Gold Nanoparticles: A new weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2(2021), 8, 1–17.

[10] Annesi F. et al.: Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloid. Surface. A 625(2021), 126950.

[11] Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles: Wiley-VCH, 1998.

[12] Guglielmelli A. et al.: Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 16(2021), 2, 121– 138.

[13] Black S.E.: Laser ablation: Effects and Applications. Nova Science, New York 2011.

[14] Radhakrishnan A., Murugesan V.: Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations. AIP Conf. Proc. 1620(2014), 52–57.

[15] Giannini V, Fernandez-Domínguez A.I., Heck S.C., Maier S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(2011), 6, 3888 – 3912.

[16] Louis C., Pluchery O. (Eds.): Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College, London 2012.

[17] Martin R.J.: Mie scattering formulae for non-spherical particles. J. Mod. Optic. 12(1993), 40, 2467–2494

[18] Myers T.G.: Why are the slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10(2011), 1145–1145.

[19] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(2008), 9, 2632–2637.

[20] Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. T. R. Soc. Lond. 170(1879), 231–25.

[21] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018), 1, 64–80.

[22] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conf. Proc. 2077(2019), 020065-1–020065-9.

[23] Badur J., Freidt M., Ziółkowski P.: Neoclassical Navier–Stokes equations considering the Gyftopolous–Beretta exposition of thermodynamics. Energies 13(2020), 1656, 1–32.

[24] Mikielewicz D.: Hydrodynamics and heat transfer in bubbly two-phase flows. Int. J. Heat Mass Tran. 46(2002), 2, 207–220.

[25] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409.

[26] Badur J.: Concept of Energy Evolution. Wydawn. IMP PAN, Gdansk 2009 (in Polish).

[27] Smoluchowski M.: On conduction of heat by rarefied gases. Phyl. Mag. 46(1898), 192–206.

[28] Smoluchowski M.: On conduction of heat in pulverized solids. Pol. Ac. Art. Sci. 2(1927), 1, 66–77.

[29] Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M.: Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat. Fluid. Fl. 50(2014), 114–125.

[30] Stephenson D., Lockerby D.A., Borg M.K., Reese J.M.: Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid. 18(2015), 5– 6, 841–858.

[31] Lockerby D.A., Patronis A., Borg M.K., Reese J.M.: Asynchronous coupling of hybrid models for efficient simulation of multiscale systems. J. Comput. Phys. 284(2015) 261–272.

[32] Sobieski W., Zhang Q.: Multi-scale modeling of flow resistance in granular porous media. Math. Comput. Simulat. 132(2017), 159–171.

[33] Johnson P.B., Christy R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(1972), 12, 4370–4379.

[34] Narottam P.B.: Handbook of Glass Properties. Academic Press, New York 1986.

[35] Agari Y., Ueda A., Omura Y.: Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(1997), 4, 801–807.

[36] Cahill D.G., Olson J.R., Fischer H.E., Watson S.K., Stephens R.B., Tait R.H., Ashworth T., Pohl R.O.: Thermal conductivity and specific heat of glass ceramics. Phys. Rev. B 44(1991), 22, 226–232,

[37] James E.M. (Ed.): Polymer Data Handbook. Oxford University Press (1999), 131, 363–367, 411–435, 655–657.

[38] Dixon M.C., Daniel T.A., Hieda M., Smilgies D.M., Chan M.C., Allara D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(2007), 5, 2414–2422.

[39] Harvey B.S.: Hyperthermia. New Engl. J. Med. 329(1993), 483–487.

[40] Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model withcomplete frequency redistribution. J. Quant. Spectrosc. Ra. 2(1999), 2, 665–675.

[41] Koniorczyk P., Zmywaczyk J.: Analysis of thermal conductivity reduction in grey medium using a discrete ordinate method and the Henyey–Greenstein phase function for absorbing, emitting and anisotropically scattering media. Arch. Thermodyn. 29(2008), 2, 47–60.

[42] Filkoski R.V.: Radiation heat transfer modeling and CFD analysis of pulverizedcoal combustion with staged air introduction. Arch. Thermodyn. 30(2009), 4, 97–118.

[43] Dabrowski P.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38(2017), 3, 135–148.

Słowa kluczowe:
Artificial roughness
Arc shaped geometry
Energy analysis
Exergy analysis
Solar air heater

In the present study, energy and exergy analysis has been evaluated for roughened solar air heater (SAH) using arc shaped wire ribs. To achieve this aim, two different types of flow arrangement have been considered. These arrangements are: apex upstream flow and apex downstream flo. In addition to this, a smooth duct SAH has been used for comparative study. The experiments were performed using the mass flow rate of 0.007– 0.022 kg/s on outdoor condition at Jamshedpur city of India. The absorber plate roughness geometry has been designed with relative roughness height 0.0395, rib size 2.5 mm, relative roughness pitch 10 and arc angle 60 . The energetic and exergetic performances have been examined on the basis of the first and second law of thermodynamics. According to the results, there is observed to be the maximum thermal efficiency and exergy efficiency as 73.2% and 2.64%, respectively, for apex upstream flow SAH at 0.022 kg/s, while, at same mass flow rate the maximum thermal efficiency and exergy efficiency is obtained as 69.4% and 1.89%, respectively, for apex downstream flow SAH. In addition to this, results reported that the maximum outlet temperature and temperature difference observed at lower mass flow rate. Also examined the outlet air temperature of SAH with various mass flow rates is very important for both analysis.

Przejdź do artykułu
[1] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes (3rd Edn.). Wiley, New York 2006.

[2] Garg H.P., Prakash J.: Solar Energy Fundamentals and Applications. Tata Mc- Graw Hill, New Delhi 2006.

[3] Ghritlahre H.K.: Performance Evaluation of solar air heating systems using artificial neural network. PhD thesis, National Institute of Technology, Jamshedpur 2019.

[4] Ghritlahre H.K., Chandrakar P., Ahmad A.: A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann. Data Sci. 8(2019), 405–449).

[5] Prakash C., Saini R.P.: Use of artificial roughness for performance enhancement of solar air heaters – a review. Int. J. Green Energy 16(2019), 7, 551–572.

[6] Ghritlahre H.K., Sahu P.K., Chand S.: Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol. Energy 199(2020), 173–182.

[7] Ghritlahre HK, Prasad RK.: Exergetic performance prediction of a roughened solar air heater using artificial neural network. Strojniški vestnik/J. Mech. Eng. 64(2018), 3, 195–206.

[8] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. J. Environ. Manage. 223(2018), 566–575.

[9] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. Int. J. Heat Technol. 36(2018), 3, 1107–1115.

[10] Kurtbas I., Durmus A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 9, 1489–1501.

[11] Kurtbas I, Turgut E.: Experimental investigation of solar air heater with free and fixed fins: Efficiency and exergy loss. Int. J. Sci. Technol. 1(2006), 1, 75–82.

[12] Karsli S.: Performance analysis of new-design solar air collectors for drying applications. Renew. Energ. 32(2007), 10, 1645–1660.

[13] Esen H.: Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(2008), 6, 1046–1054.

[14] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 11, 1691–1702.

[15] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energ. 34(2009), 3, 465–476.

[16] Akpinar E.K., Koçyigit F.: Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energ. 87(2010), 11, 3438–3450.

[17] Alta D., Bilgili E., Ertekin C., Yaldiz O.: Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl. Energ. 87(2010), 10, 2953–2973.

[18] Bouadila S., Kooli S., Lazaar M., Skouri S., Farhat A.: Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energ. 110(2013), 267–275.

[19] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energ. 50(2013), 58–67.

[20] Bayrak F., Oztop H.F., Hepbasli A.: Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energ. Buildings 57(2013), 338–345.

[21] Velmurugana P., Kalaivanan R.: Energy and exergy analysis of multi-pass flat plate solar air heater – An analytical approach. Int. J. Green Energy 12(2015), 8, 810–820.

[22] Acır A., Ata I., Sahin I.: Energy and exergy analyses of a new solar air heater with circular-type turbulators having different relief angles. Int. J. Exergy 20(2016), 1, 85–104.

[23] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Cienc. Tec. Vitivinic. 32(2017), 11, 2–24

[24] Abuska M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131(2018), 115–124.

[25] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 161(2018), 25–37.

[26] Aktas M. Sevik S., Dolgun E.C., Demirci B.: Drying of grape pomace with a double pass solar collector. Dry. Technol. 37(2019), 1, 105–117.

[27] Aktas M., Sözen A., Tuncer A.D., Arslan E., Kosan M., Çürük O.: Energyexergy analysis of a novel multi-pass solar air collector with perforated fins. Int. J. Renew. Energ. Dev. 8(2019), 1, 47–55.

[28] Kumar A., Layek A.: Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. J. Clean. Prod. 232(2019), 617– 628.

[29] Ural T.: Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses. Energy 188(2019), 116116.

[30] Abdelkader T.K., Zhang Y., Gaballah E.S., Wang S., Wan Q., Fan Q.: Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J. Clean. Prod. 250(2020), 19501.

[31] Dheep G.R., Sreekumar A.: Experimental studies on energy and exergy analysis of a single pass parallel flow solar air heater. J. Sol. Energy Eng. 142(2020), 1, 011003 SOL-19-1038 .

[32] Debnath S., Das B., Randive P.: Energy and exergy analysis of plain and corrugated solar air collector: effect of seasonal variation. Int. J. Amb. Energ. (2020), doi: 10.1080/01430750.2020.1778081.

[33] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Application of ANN model to predict the performance of solar air heater using relevant input parameters. Sustain. Energ. Technol. Asses. 40(2020), 100764.

[34] Ghritlahre H.K.: Heat transfer and friction factor characteristics investigation of roughened solar air heater using arc shaped wire rib roughness. Int. J. Amb. Energ. (2021), doi: 10.1080/01430750.2021.1934115.

[35] Ghritlahre H.K., Verma M.: Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods. J. Clean. Prod. 288(2021), 125115.

[36] Kline S.J„ McClintock F.A.: Describe uncertainties in single sample experiments. Mech. Eng. 75(1953), 1, 3–8.

[37] Holman J.P.: Experimental Methods for Engineers. McGraw-Hill, New York 2007.

[38] Petela R.: An approach to the exergy analysis of photosynthesis. Sol. Energy, 82(2008), 4, 311–328.

[39] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.

[40] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Solar air heater performance prediction using artificial neural network technique with relevant input variables. Arch. Thermodyn. 41(2020), 3, 255–282.

Przejdź do artykułu
[2] Garg H.P., Prakash J.: Solar Energy Fundamentals and Applications. Tata Mc- Graw Hill, New Delhi 2006.

[3] Ghritlahre H.K.: Performance Evaluation of solar air heating systems using artificial neural network. PhD thesis, National Institute of Technology, Jamshedpur 2019.

[4] Ghritlahre H.K., Chandrakar P., Ahmad A.: A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann. Data Sci. 8(2019), 405–449).

[5] Prakash C., Saini R.P.: Use of artificial roughness for performance enhancement of solar air heaters – a review. Int. J. Green Energy 16(2019), 7, 551–572.

[6] Ghritlahre H.K., Sahu P.K., Chand S.: Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol. Energy 199(2020), 173–182.

[7] Ghritlahre HK, Prasad RK.: Exergetic performance prediction of a roughened solar air heater using artificial neural network. Strojniški vestnik/J. Mech. Eng. 64(2018), 3, 195–206.

[8] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. J. Environ. Manage. 223(2018), 566–575.

[9] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. Int. J. Heat Technol. 36(2018), 3, 1107–1115.

[10] Kurtbas I., Durmus A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 9, 1489–1501.

[11] Kurtbas I, Turgut E.: Experimental investigation of solar air heater with free and fixed fins: Efficiency and exergy loss. Int. J. Sci. Technol. 1(2006), 1, 75–82.

[12] Karsli S.: Performance analysis of new-design solar air collectors for drying applications. Renew. Energ. 32(2007), 10, 1645–1660.

[13] Esen H.: Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(2008), 6, 1046–1054.

[14] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 11, 1691–1702.

[15] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energ. 34(2009), 3, 465–476.

[16] Akpinar E.K., Koçyigit F.: Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energ. 87(2010), 11, 3438–3450.

[17] Alta D., Bilgili E., Ertekin C., Yaldiz O.: Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl. Energ. 87(2010), 10, 2953–2973.

[18] Bouadila S., Kooli S., Lazaar M., Skouri S., Farhat A.: Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energ. 110(2013), 267–275.

[19] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energ. 50(2013), 58–67.

[20] Bayrak F., Oztop H.F., Hepbasli A.: Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energ. Buildings 57(2013), 338–345.

[21] Velmurugana P., Kalaivanan R.: Energy and exergy analysis of multi-pass flat plate solar air heater – An analytical approach. Int. J. Green Energy 12(2015), 8, 810–820.

[22] Acır A., Ata I., Sahin I.: Energy and exergy analyses of a new solar air heater with circular-type turbulators having different relief angles. Int. J. Exergy 20(2016), 1, 85–104.

[23] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Cienc. Tec. Vitivinic. 32(2017), 11, 2–24

[24] Abuska M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131(2018), 115–124.

[25] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 161(2018), 25–37.

[26] Aktas M. Sevik S., Dolgun E.C., Demirci B.: Drying of grape pomace with a double pass solar collector. Dry. Technol. 37(2019), 1, 105–117.

[27] Aktas M., Sözen A., Tuncer A.D., Arslan E., Kosan M., Çürük O.: Energyexergy analysis of a novel multi-pass solar air collector with perforated fins. Int. J. Renew. Energ. Dev. 8(2019), 1, 47–55.

[28] Kumar A., Layek A.: Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. J. Clean. Prod. 232(2019), 617– 628.

[29] Ural T.: Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses. Energy 188(2019), 116116.

[30] Abdelkader T.K., Zhang Y., Gaballah E.S., Wang S., Wan Q., Fan Q.: Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J. Clean. Prod. 250(2020), 19501.

[31] Dheep G.R., Sreekumar A.: Experimental studies on energy and exergy analysis of a single pass parallel flow solar air heater. J. Sol. Energy Eng. 142(2020), 1, 011003 SOL-19-1038 .

[32] Debnath S., Das B., Randive P.: Energy and exergy analysis of plain and corrugated solar air collector: effect of seasonal variation. Int. J. Amb. Energ. (2020), doi: 10.1080/01430750.2020.1778081.

[33] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Application of ANN model to predict the performance of solar air heater using relevant input parameters. Sustain. Energ. Technol. Asses. 40(2020), 100764.

[34] Ghritlahre H.K.: Heat transfer and friction factor characteristics investigation of roughened solar air heater using arc shaped wire rib roughness. Int. J. Amb. Energ. (2021), doi: 10.1080/01430750.2021.1934115.

[35] Ghritlahre H.K., Verma M.: Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods. J. Clean. Prod. 288(2021), 125115.

[36] Kline S.J„ McClintock F.A.: Describe uncertainties in single sample experiments. Mech. Eng. 75(1953), 1, 3–8.

[37] Holman J.P.: Experimental Methods for Engineers. McGraw-Hill, New York 2007.

[38] Petela R.: An approach to the exergy analysis of photosynthesis. Sol. Energy, 82(2008), 4, 311–328.

[39] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.

[40] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Solar air heater performance prediction using artificial neural network technique with relevant input variables. Arch. Thermodyn. 41(2020), 3, 255–282.

Słowa kluczowe:
two-phase flow
Diffusive-inertial droplet separation
Stopping distance

This paper concerns analytical considerations on a complex phenomenon which is diffusive-inertial droplet separation from the twophase vapour-liquid flow which occurs in many devices in the power industry (e.g. heat pumps, steam turbines, organic Rankine cycles, etc.). The new mathematical model is mostly devoted to the analysis of the mechanisms of diffusion and inertia influencing the distance at which a droplet separates from the two-phase flow and falls on a channel wall. The analytical model was validated based on experimental data. The results obtained through the analytical computations stay in a satisfactory agreement with available literature data.

Przejdź do artykułu
[1] Sedler B., Mikielewicz J.: A simplified analytical flow-boiling crisis mode. Trans. Inst. Fluid-Flow Mach. 76(1978), 3–10 (in Polish).

[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.

[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).

[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).

[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.

[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.

[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.

[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.

[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.

[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.

[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.

[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.

[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.

[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.

[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.

[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.

[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.

[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.

Przejdź do artykułu
[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.

[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).

[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).

[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.

[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.

[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.

[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.

[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.

[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.

[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.

[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.

[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.

[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.

[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.

[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.

[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.

[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.

Słowa kluczowe:
Heat transfer correlation
Turbocharged engine
Cylinder liner distribution
Supercharging

For conventional diesel engines, two of the most widely used global correlations are due to Woschni and Hohenberg. Besides, the modern diesel engines used a new heat transfer coefficient correlation was proposed by Finol and Robinson. In Vietnam, improving engine power density is a trend of improving non-turbocharged base engines by using a supercharging system with exhaust gas energy recovery. Increasing engine power by the turbocharger is limited for two reasons: mechanical stress and thermal stress of the components surrounding the combustion chamber. In general, the heat transfer coefficient has a major effect on heat transfer rate, especially during the combustion process. So, the purpose of this study is to compare the cylinder distribution results from the simulation using the equations of Woschni and Hohenberg and compare to the experiment results when converting an old heavy-duty engine into a turbocharged engine. Results show that the cylinder distribution using Hohenberg’s correlation has a good agreement with the experiment results, especially in the case of a turbocharged engine.

Przejdź do artykułu
[1] Caton J.A.: An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. Wiley, 2016.

[2] Kurowski M.: Heat transfer coefficient measurements on curved surfaces. Arch. Thermodyn. 42(2021), 2, 155–170.

[3] Nusselt W.: Der Warmeubergang in der Verbrennungskrafmaschine. V.D.I. Forschungsheft 264(1923).

[4] Annand W.J.D.: Heat transfer in the cylinders of reciprocating internal combustion engines. P.I. Mech. Eng. 177(1963), 36, 973–996.

[5] Eichelberg G.: Some new investigations on old combustion engine problems. Engineering 148(1939), 463–466, 547–550.

[6] Woschni G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Transactions 76(1967), 670931, 3065–3083.

[7] Hohenberg G.F.: Advanced approaches for heat transfer calculations. SAE Tech. Pap. 790825(1979).

[8] Finol C.A., Robinson K.: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. P.I. Mech. Eng. D-J. Aut. 220(2006), 12, 1765–1781.

[9] Finol C.A., Robinson K.: Thermal modelling of modern diesel engines: proposal of a new heat transfer coefficient correlation. P.I. Mech. Eng. D-J. Aut. 225(2011), 11, 1544–1560.

[10] Parra C.A.F.: Heat transfer investigations in a modern diesel engine. PhD thesis, Univ. Bath, Bath 2008.

[11] Hiereth H., Prenninger P.: Charging the Internal Combustion Engine. Springer, Wien New York 2007.

[12] Pan M., Qian W., Wei H., Feng D., Pan J.: Effects on performance and emissions of gasoline compression ignition engine over a wide range of internal exhaust gas recirculation rates under lean conditions. Fuel 265(2020), 116881.

[13] Trung K.N.: A Study for determination of the pressure ratio of the V12 diesel engine based on the heat flow density to cooling water. In: Advances in Engineering Research and Application. (K.U. Sattler., D.C. Nguyen, N.P. Vu, B.T. Long., H. Puta, Eds.), Proc. ICERA 2020, Lecture Notes in Networks and Systems, Vol. 178, Springer, 2021, 64–74.

[14] Thompson M.K., Thompson J.M.: ANSYS Mechanical APDL for Finite Element Analysis. Butterworth-Heinemann, 2017.

[15] Trung K.N.: The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. J. Therm. Eng. 7(2021), 2 (Spec. iss.),

[16] Heywood J.B.: Internal Combustion Engine Fundamentals (2nd Edn.). McGraw- Hill Education, 2018.

Przejdź do artykułu
[2] Kurowski M.: Heat transfer coefficient measurements on curved surfaces. Arch. Thermodyn. 42(2021), 2, 155–170.

[3] Nusselt W.: Der Warmeubergang in der Verbrennungskrafmaschine. V.D.I. Forschungsheft 264(1923).

[4] Annand W.J.D.: Heat transfer in the cylinders of reciprocating internal combustion engines. P.I. Mech. Eng. 177(1963), 36, 973–996.

[5] Eichelberg G.: Some new investigations on old combustion engine problems. Engineering 148(1939), 463–466, 547–550.

[6] Woschni G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Transactions 76(1967), 670931, 3065–3083.

[7] Hohenberg G.F.: Advanced approaches for heat transfer calculations. SAE Tech. Pap. 790825(1979).

[8] Finol C.A., Robinson K.: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. P.I. Mech. Eng. D-J. Aut. 220(2006), 12, 1765–1781.

[9] Finol C.A., Robinson K.: Thermal modelling of modern diesel engines: proposal of a new heat transfer coefficient correlation. P.I. Mech. Eng. D-J. Aut. 225(2011), 11, 1544–1560.

[10] Parra C.A.F.: Heat transfer investigations in a modern diesel engine. PhD thesis, Univ. Bath, Bath 2008.

[11] Hiereth H., Prenninger P.: Charging the Internal Combustion Engine. Springer, Wien New York 2007.

[12] Pan M., Qian W., Wei H., Feng D., Pan J.: Effects on performance and emissions of gasoline compression ignition engine over a wide range of internal exhaust gas recirculation rates under lean conditions. Fuel 265(2020), 116881.

[13] Trung K.N.: A Study for determination of the pressure ratio of the V12 diesel engine based on the heat flow density to cooling water. In: Advances in Engineering Research and Application. (K.U. Sattler., D.C. Nguyen, N.P. Vu, B.T. Long., H. Puta, Eds.), Proc. ICERA 2020, Lecture Notes in Networks and Systems, Vol. 178, Springer, 2021, 64–74.

[14] Thompson M.K., Thompson J.M.: ANSYS Mechanical APDL for Finite Element Analysis. Butterworth-Heinemann, 2017.

[15] Trung K.N.: The temperature distribution of the wet cylinder liner of V-12 engine according to calculation and experiment. J. Therm. Eng. 7(2021), 2 (Spec. iss.),

[16] Heywood J.B.: Internal Combustion Engine Fundamentals (2nd Edn.). McGraw- Hill Education, 2018.

Słowa kluczowe:
Fast pyrolysis
biomass
Euler–Lagrange
Drop tube reactor
Heating time

This work presents two-dimensional numerical investigations of fast pyrolysis of red oak in a free fall reactor. The Euler–Lagrange approach of multiphase flow theory was proposed in order to describe the behaviour of solid particles in the gaseous domain. The main goal of this study was to examine the impact of the flow rate of inert gas on the pyrolysis process. Calculation domain of the reactor was made according to data found in the literature review. Volume flow rates were 3, 9, 18, and 25 l/min, respectively. Nitrogen was selected as an inert gas. Biomass pyrolysis was conducted at 550 deg C with a constant mass flow rate of biomass particles equal to 1 kg/h. A parallel multistage reaction mechanism was applied for the thermal conversion of red oak particles. The composition of biomass was represented by three main pseudo-components: cellulose, hemicellulose and lignin. The received products of pyrolysis were designated into three groups: solid residue (char and unreacted particles), primary tars and noncondensable gases. In this work the impact of the volume flow rate on the heating time of solid particle, temperature distribution, yields and char mass fraction has been analysed. The numerical solutions were verified according to the literature results when the flow of nitrogen was set at 18 l/min. The calculated results showed that biomass particles could be heated for longer when the flow rate of nitrogen was reduced, allowing for a greater concentration of volatile matter.

Przejdź do artykułu
[1] Global Bioenergy Statistics 2019. World Biomass Association. http://www.worldbio energy.org (accessed 1 March 2021).

[2] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier, 2013.

[3] Tripathi M., Sahu J.N., Ganesan P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev. 55(2016), 467–481.

[4] Lu J.S., Chang Y., Poon C.S., Lee D.J.: Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technol. 312(2020), 123615.

[5] Bridgwater A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38(2012), 68–94.

[6] Al Arni S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energ. 123(2018), 197–201.

[7] Ronsse F., Hecke S. van, Dickinson D., Prins W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2013), 2, 104–115.

[8] Zabski J, Lampart P, Gumkowski S.: Biomass drying: Experimental and numerical investigations. Arch. Thermodyn. 39(2018), 1, 39–73.

[9] Eri Q., Peng J., Zhao X.: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model. Appl. Therm. Eng. 129(2018), 1358–1368.

[10] Xue Q., Dalluge D., Heindel T.J., Fox R.O., Brown R.C.: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97(2012), 757–769.

[11] Lu L., Gao X., Shahnam M., Rogers W.A.: Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM. Chem. Eng. Sci. 216(2020), 115471.

[12] Liu B., Papadikis K., Gu S., Fidalgo B., Longhurst P., Li Z., Kolios A.: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Process. Technol. 164(2017), 51–68.

[13] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł.: A comprehensive three-dimensional analysis of a large-scale multi-fuel cfb boiler burning coal and syngas. Part 1. The CFD model of a large-scale multi-fuel CFB combustion. Entropy 22(2020), 9, 1–32, 964.

[14] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł: A comprehensive, three-dimensional analysis of a large-scale, multi-fuel, CFB boiler burning coal and syngas. Part 2. Numerical simulations of coal and syngas cocombustion. Entropy, 22(2020), 8, 1–30, 856.

[15] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3, 3–26.

[16] Kaczor Z., Bulinski Z., Werle S.: Modelling approaches to waste biomass pyrolysis: a review. Renew. Energ. 159(2020), 427–443.

[17] Xue Q., Heindel T.J., Fox R.O.: A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 66(2011), 11, 2440–2452.

[18] Yu X., Makkawi Y., Ocone R., Huard M., Briens C., Berruti F.: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas–solid separator – I: Hydrodynamic performance. Fuel Process. Technol. 126(2014), 366–382.

[19] Mellin P., Zhang Q., Kantarelis E., Yang W.: An Euler–Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase. Appl. Therm. Eng. 58(2013), 1-2, 344–353.

[20] Qi F., Wright M.M.: A DEM modeling of biomass fast pyrolysis in a double auger reactor. Int. J. Heat Mass Tran. 150(2020), 119308.

[21] Kardas D., Hercel P., Polesek-Karczewska S., Wardach-Swiecicka I.: A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate. Energy 189(2019), 116159.

[22] Wijaya W.Y., Kawasaki S., Watanabe H., Okazaki K.: Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl. Energ. 94(2012), 141–147.

[23] Bidabadi M., Haghiri A., Rahbari A.: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int. J. Therm. Sci. 49(2010), 3, 534–542.

[24] Ansarifar H., Shams M.: Numerical simulation of hydrogen production by gasification of large biomass particles in high temperature fluidized bed reactor. Int. J. Hydrogen Energ. 43(2018), 10, 5314–5330.

[25] Nugraha M.G., Saptoadi H., Hidayat M., Andersson B., Andersson R.: Particle modelling in biomass combustion using orthogonal collocation. Appl. Energ. 255(2019), 113868.

[26] Wickramaarachchi W.A.M.K.P., Narayana M.: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energ. 146(2020), 1153–1165.

[27] Wardach-Swiecicka I., Kardas D.: Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 2(2013), 2, 53–71.

[28] Gable P., Brown R.C.: Effect of biomass heating time on bio-oil yields in a free fall fast pyrolysis reactor. Fuel 166(2016), 361–366.

[29] McGee H.A.: Molecular Engineering. McGraw Hill, New York 1991.

[30] Kuo K.K.: Principles of Combustion. Wiley, New York 1986.

[31] Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Sym. Ser. 62(1966), 100–111.

[32] Ranz W.E.: Evaporation from drops: Part II. Chem. Eng. Progr. 48(1952), 173–180.

[33] Ranzi E., Cuoci A., Faravelli T., Frassoldati A., Migliavacca G., Pierucci S., Sommariva S.: Chemical kinetics of biomass pyrolysis. Energ. Fuel. 22(2008), 6, 4292–4300.

[34] Miller R.S, Bellan J.: A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 126(1997), 1-6, 97–137.

[35] White J.E., Catallo W.J., Legendre B.L.: Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 91(2011), 1, 1–33.

[36] Rahimi Borujerdi P., Shotorban B., Mahalingam S., Weise D.R.: Modeling of water evaporation from a shrinking moist biomass slab subject to heating: Arrhenius approach versus equilibrium approach. Int. J. Heat Mass Tran. 145(2019), 118672.

[37] Jin W., Singh K., Zondlo J.: Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(2013), 1, 12–32.

[38] Ansys Fluent 12.0 Theory Guide. https://www.afs.enea.it/project/neptun ius/docs/fluent/html/th/main_pre.htm (accessed 1 March 2021).

[39] Bridgwater A.V., Meier D., Radlein D.: An overview of fast pyrolysis of biomass. Org. Geochem. 30(1999), 12, 1479–1493.

[40] Meier D., Faix O.: State of the art of applied fast pyrolysis of lignocellulosic materials — a review. Bioresource Technol. 68(1999), 1, 71–77.

[41] Mašek O.: Biochar in thermal and thermochemical biorefineries — production of biochar as a coproduct. In: Handbook of Biofuels Production (2nd Edn.), (R. Luque, C. Sze Ki Lin, K. Wilson, J. Clark, Eds.), Woodhead, 2016, 655–671.

[42] Efika C.E., Onwudili J.A., Williams P.T.: Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Waste Manage. 76(2018), 497–506.

[43] Klinger J.L., Westover T.L., Emerson R.M., Williams C.L., Hernandez S., Monson G.D., Ryan J.C.: Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ. 228(2018), 535–545.

Przejdź do artykułu
[2] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier, 2013.

[3] Tripathi M., Sahu J.N., Ganesan P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev. 55(2016), 467–481.

[4] Lu J.S., Chang Y., Poon C.S., Lee D.J.: Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technol. 312(2020), 123615.

[5] Bridgwater A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38(2012), 68–94.

[6] Al Arni S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energ. 123(2018), 197–201.

[7] Ronsse F., Hecke S. van, Dickinson D., Prins W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2013), 2, 104–115.

[8] Zabski J, Lampart P, Gumkowski S.: Biomass drying: Experimental and numerical investigations. Arch. Thermodyn. 39(2018), 1, 39–73.

[9] Eri Q., Peng J., Zhao X.: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model. Appl. Therm. Eng. 129(2018), 1358–1368.

[10] Xue Q., Dalluge D., Heindel T.J., Fox R.O., Brown R.C.: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97(2012), 757–769.

[11] Lu L., Gao X., Shahnam M., Rogers W.A.: Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM. Chem. Eng. Sci. 216(2020), 115471.

[12] Liu B., Papadikis K., Gu S., Fidalgo B., Longhurst P., Li Z., Kolios A.: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Process. Technol. 164(2017), 51–68.

[13] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł.: A comprehensive three-dimensional analysis of a large-scale multi-fuel cfb boiler burning coal and syngas. Part 1. The CFD model of a large-scale multi-fuel CFB combustion. Entropy 22(2020), 9, 1–32, 964.

[14] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł: A comprehensive, three-dimensional analysis of a large-scale, multi-fuel, CFB boiler burning coal and syngas. Part 2. Numerical simulations of coal and syngas cocombustion. Entropy, 22(2020), 8, 1–30, 856.

[15] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3, 3–26.

[16] Kaczor Z., Bulinski Z., Werle S.: Modelling approaches to waste biomass pyrolysis: a review. Renew. Energ. 159(2020), 427–443.

[17] Xue Q., Heindel T.J., Fox R.O.: A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 66(2011), 11, 2440–2452.

[18] Yu X., Makkawi Y., Ocone R., Huard M., Briens C., Berruti F.: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas–solid separator – I: Hydrodynamic performance. Fuel Process. Technol. 126(2014), 366–382.

[19] Mellin P., Zhang Q., Kantarelis E., Yang W.: An Euler–Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase. Appl. Therm. Eng. 58(2013), 1-2, 344–353.

[20] Qi F., Wright M.M.: A DEM modeling of biomass fast pyrolysis in a double auger reactor. Int. J. Heat Mass Tran. 150(2020), 119308.

[21] Kardas D., Hercel P., Polesek-Karczewska S., Wardach-Swiecicka I.: A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate. Energy 189(2019), 116159.

[22] Wijaya W.Y., Kawasaki S., Watanabe H., Okazaki K.: Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl. Energ. 94(2012), 141–147.

[23] Bidabadi M., Haghiri A., Rahbari A.: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int. J. Therm. Sci. 49(2010), 3, 534–542.

[24] Ansarifar H., Shams M.: Numerical simulation of hydrogen production by gasification of large biomass particles in high temperature fluidized bed reactor. Int. J. Hydrogen Energ. 43(2018), 10, 5314–5330.

[25] Nugraha M.G., Saptoadi H., Hidayat M., Andersson B., Andersson R.: Particle modelling in biomass combustion using orthogonal collocation. Appl. Energ. 255(2019), 113868.

[26] Wickramaarachchi W.A.M.K.P., Narayana M.: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energ. 146(2020), 1153–1165.

[27] Wardach-Swiecicka I., Kardas D.: Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 2(2013), 2, 53–71.

[28] Gable P., Brown R.C.: Effect of biomass heating time on bio-oil yields in a free fall fast pyrolysis reactor. Fuel 166(2016), 361–366.

[29] McGee H.A.: Molecular Engineering. McGraw Hill, New York 1991.

[30] Kuo K.K.: Principles of Combustion. Wiley, New York 1986.

[31] Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Sym. Ser. 62(1966), 100–111.

[32] Ranz W.E.: Evaporation from drops: Part II. Chem. Eng. Progr. 48(1952), 173–180.

[33] Ranzi E., Cuoci A., Faravelli T., Frassoldati A., Migliavacca G., Pierucci S., Sommariva S.: Chemical kinetics of biomass pyrolysis. Energ. Fuel. 22(2008), 6, 4292–4300.

[34] Miller R.S, Bellan J.: A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 126(1997), 1-6, 97–137.

[35] White J.E., Catallo W.J., Legendre B.L.: Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 91(2011), 1, 1–33.

[36] Rahimi Borujerdi P., Shotorban B., Mahalingam S., Weise D.R.: Modeling of water evaporation from a shrinking moist biomass slab subject to heating: Arrhenius approach versus equilibrium approach. Int. J. Heat Mass Tran. 145(2019), 118672.

[37] Jin W., Singh K., Zondlo J.: Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(2013), 1, 12–32.

[38] Ansys Fluent 12.0 Theory Guide. https://www.afs.enea.it/project/neptun ius/docs/fluent/html/th/main_pre.htm (accessed 1 March 2021).

[39] Bridgwater A.V., Meier D., Radlein D.: An overview of fast pyrolysis of biomass. Org. Geochem. 30(1999), 12, 1479–1493.

[40] Meier D., Faix O.: State of the art of applied fast pyrolysis of lignocellulosic materials — a review. Bioresource Technol. 68(1999), 1, 71–77.

[41] Mašek O.: Biochar in thermal and thermochemical biorefineries — production of biochar as a coproduct. In: Handbook of Biofuels Production (2nd Edn.), (R. Luque, C. Sze Ki Lin, K. Wilson, J. Clark, Eds.), Woodhead, 2016, 655–671.

[42] Efika C.E., Onwudili J.A., Williams P.T.: Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Waste Manage. 76(2018), 497–506.

[43] Klinger J.L., Westover T.L., Emerson R.M., Williams C.L., Hernandez S., Monson G.D., Ryan J.C.: Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ. 228(2018), 535–545.

Słowa kluczowe:
Steam turbines
Curtis stage
Computational Fluid Dynamics
Partial admission

In small steam turbines, sometimes the efficiency is not as important as the cost of manufacturing the turbine. The Curtis wheel is a solution allowing to develop a low output turbine of compact size and with a low number of stages. This paper presents three fully dimensional computational fluid dynamics cases of a Curtis stage with full and partial admission. A 1 MW steam turbine with a Curtis stage have been designed. The fully admitted stage reaches a power of over 3 MW. In order to limit its output power to about 1 MW, the partial admission was applied. Five variants of the Curtis stage partial admission were analyzed. Theoretical relations were used to predict the partial admission losses which were compared with a three-dimensional simulations. An analysis of the flow and forces acting on rotor blades was also performed.

Przejdź do artykułu
[1] Achille M., Cardarelli S., Pantano F., Zito M.: Design and CFD analysis of a Curtis turbine stage. In: Proc. 29th Int. Conf. on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, ECOS 2016, Portorož, June 19–23, 2016.

[2] Rashid S., Tremmel M., Waggott J., Moll R.: Curtis stage nozzle/rotor aerodynamic interaction and the effect on stage performance. J. Turbomach. 129(2007), 3, 551–562

[3] Perycz S.: Steam and Gas Turbines. Ossolineum, Wrocław 1992.

[4] Surwilo J., Lampart P., Szymaniak M.: CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine. Open Eng. 5(2015), 1, 360–364.

[5] Kosowski K., Piwowarski M., Włodarski W., Stepien R.: A multistage turbine for a micro power plant. In: Proc. IFToMM Int. Symp. on Dynamics of Steam and Gas Turbines (R. Rzadkowski, Ed.), Gdansk, 1-3 Dec., 2009, Wydawn. IMP PAN, Gdansk 2009, 283–290.

[6] Pan Y., Yuan Q., Zhu G.: Numerical Investigation on the Influence of Inlet Structure on Partial-admission Losses. Proc. Chin. Soc. Electr. Eng. 38(2018), 14, 4156– 4164.

[7] Sakai N., Harada T., Imai Y.: Numerical study of partial admission stages in steam turbine. JSME Int. J. B-Fluid T. 49(2006), 2, 212–217.

[8] Lampart P., Szymaniak M., Rzadkowski R.: Unsteady load of partial admission control stage rotor of a large power steam turbine. In Proc. ASME Turbo EXPO 2004, Power for Land, Sea and Air, Vienna, June 14–17, 2004, ASME GT-2004- 53886, 2004.

[9] Koprowski A., Rzadkowski R.: Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries. Arch. Thermodyn. 42(2021), 1, 35–55.

[10] Rusanov A., Rusanov R.: The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages. Arch. Thermodyn. 42(2021), 1, 97–114.

[11] Dejch M.E., Filippov G.A., Lazarev L.Ja.: Collection of Profiles for Axial Turbine Cascades. Machinostroienie, Moscow 1965 (in Russian).

[12] Neuimin V.M.: Methods of evaluating power losses for ventilation in stages of steam turbines of TES. Therm. Eng.+ 61(2014), 10, 765–770.

[13] Ansys CFX, Release 18.2.

[14] Ansys DesignModeller, Release 18.2.

[15] Ansys TurboGrid, Release 18.2.

[16] Ansys CFX, Release 18.2, CFX documentation.

[17] Wagner W., Pruss A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2002), 2, 387–535

Przejdź do artykułu
[2] Rashid S., Tremmel M., Waggott J., Moll R.: Curtis stage nozzle/rotor aerodynamic interaction and the effect on stage performance. J. Turbomach. 129(2007), 3, 551–562

[3] Perycz S.: Steam and Gas Turbines. Ossolineum, Wrocław 1992.

[4] Surwilo J., Lampart P., Szymaniak M.: CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine. Open Eng. 5(2015), 1, 360–364.

[5] Kosowski K., Piwowarski M., Włodarski W., Stepien R.: A multistage turbine for a micro power plant. In: Proc. IFToMM Int. Symp. on Dynamics of Steam and Gas Turbines (R. Rzadkowski, Ed.), Gdansk, 1-3 Dec., 2009, Wydawn. IMP PAN, Gdansk 2009, 283–290.

[6] Pan Y., Yuan Q., Zhu G.: Numerical Investigation on the Influence of Inlet Structure on Partial-admission Losses. Proc. Chin. Soc. Electr. Eng. 38(2018), 14, 4156– 4164.

[7] Sakai N., Harada T., Imai Y.: Numerical study of partial admission stages in steam turbine. JSME Int. J. B-Fluid T. 49(2006), 2, 212–217.

[8] Lampart P., Szymaniak M., Rzadkowski R.: Unsteady load of partial admission control stage rotor of a large power steam turbine. In Proc. ASME Turbo EXPO 2004, Power for Land, Sea and Air, Vienna, June 14–17, 2004, ASME GT-2004- 53886, 2004.

[9] Koprowski A., Rzadkowski R.: Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries. Arch. Thermodyn. 42(2021), 1, 35–55.

[10] Rusanov A., Rusanov R.: The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages. Arch. Thermodyn. 42(2021), 1, 97–114.

[11] Dejch M.E., Filippov G.A., Lazarev L.Ja.: Collection of Profiles for Axial Turbine Cascades. Machinostroienie, Moscow 1965 (in Russian).

[12] Neuimin V.M.: Methods of evaluating power losses for ventilation in stages of steam turbines of TES. Therm. Eng.+ 61(2014), 10, 765–770.

[13] Ansys CFX, Release 18.2.

[14] Ansys DesignModeller, Release 18.2.

[15] Ansys TurboGrid, Release 18.2.

[16] Ansys CFX, Release 18.2, CFX documentation.

[17] Wagner W., Pruss A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2002), 2, 387–535

11
Assessing the performance of the airflow window for ventilation and thermal comfort in office rooms

Słowa kluczowe:
HVAC
Natural ventilation
Airflow window
Thermal comfort
Contaminant removal

In the present study performance of an airflow window in removing contaminants as well as providing thermal comfort for the occupants was investigated. Both natural/mixed ventilation methods were studied and the full heating load as well as contaminant sources in the office rooms considered. Then, the local and average temperature, relative humidity, velocity as well as CO2 and dust concentration were extracted from simulation results and compared to criteria in international ventilation standards. It was found that except in the big room having 8 m×6 m flooring, natural ventilation from the airflow window can satisfy the thermal and relative humidity conditions in the international ventilation standard except for the American Society of Heating, Refrigerating and Air-Conditioning Engineers. However, the thermal comfort in the room which was measured by extended predicted mean vote could not be achieved when the window operates in the natural ventilation mode, even with a 0.4 m height opening in the small (3 m×4 m) room. Finally, results indicated that the airflow ventilation system installed in small and medium offices operation can provide indoor condition in the ventilation standard either in natural/mixed operation mode consuming less energy than the traditional heating, ventilation, and air conditioning. Besides, the airflow system not only was not able to provide thermal comfort condition in the big office but also its application was not economically feasible.

Przejdź do artykułu
[1] Veriche R.K.V., Zamorano M., Carpio M.: Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile. Energy Build. 215(2020), 109874.

[2] Gulan M., Salaj M., Rohal’-Ilkiv B.: Application of adaptive multivariable Generalized Predictive Control to a HVAC system in real time. Arch. Control Sci. 24(2014), 1, 67–84.

[3] Ilbeigi M., Ghomeishi M., Dehghanbanadaki A.: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 61(2020), 102325.

[4] Awbi H.B.: Air movement in naturally-ventilated buildings. Renew. Energ. 8(1996), 1–4, 241–247.

[5] Stavrakakis G.M., Koukou M.K., Vrachopoulos M.Gr., Markatos N.C.: Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation. Energ. Build. 40(2008), 9, 1666–1681.

[6] Bangalee M.Z.I., Lin S.Y., Miau J.J.: Wind-driven natural ventilation through multiple windows of a building: A computational approach. Energ. Build. 45(2012), 317–325.

[7] Dascalaki E., Santamouris M., Asimakopoulos D.N.: On the use of deterministic and intelligent techniques to predict the air velocity distribution on external openings in single-sided natural ventilation configurations. Sol. Energy. 66(1999), 3, 223–243.

[8] Liu X., Lv X., Peng Z., Shi C.: Experimental study of airflow and pollutant dispersion in cross-ventilated multi-room buildings: Effects of source location and ventilation path. Sustain. Cities Soc. (2020), 52, 101822.

[9] Hu Y., Heiselberg P.K., Guo R.: Ventilation cooling/heating performance of a PCM enhanced ventilated window-an experimental study. Energ. Build. 214(2020), 109903.

[10] Chen Y., Tong Z., Wu W., Samuelson H., Malkawi A., Norford L.: Achieving natural ventilation potential in practice: Control schemes and levels of automation. Appl. Energ. 235(2019), 1, 1141–1152.

[11] Chen J., Brager G.S., Augenbroe G., Song X.: Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Appl. Energ. 235(2019), 1, 673–684.

[12] Goudarzi N., Sheikhshahrokhdehkordi M., Khalesi J., Hosseiniirani S.: Airflow and thermal comfort evaluation of a room with different outlet opening sizes and elevations ventilated by a two-sided wind catcher. J. Build. Eng. 37(2021), 102112.

[13] Park D.Y., Chang S.: Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustain. Cities Soc. 61(2020), 102292.

[14] Tao Y., Zhang H., Zhang L., Zhang G., Tu J., Shi L.: Ventilation performance of a naturally ventilated double-skin façade in buildings. Renew. Energ. 167(2020), 184–198.

[15] Tartarini F., Schiavon S., Cheung T., Hoyt T.: CBE thermal comfort tool: online tool for thermal comfort calculations and visualizations. SoftwareX 12(2020), 100563.

[16] Liu S., Luo Z., Zhang K., Hang J.: Natural ventilation of a small-scale road tunnel by wind catchers: A CFD simulation study. Atmosphere 9(2018), 10, 411.

[17] Aghakhani M., Eslami G.: Thermal comfort assessment of underfloor vs. overhead air distribution system. J. Appl. Sci. 12(2012), 5, 473–479.

[18] Michaux G., Greffet R., Salagnac P., Ridoret J.: Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows. Appl. Energ. 242(2019), 27–45.

[19] Phaff J.C., de Gids W.F., Ton J.A.,. van der Ree D.V., Schijndel L.L.M.: The ventilation of buildings: Investigation of the consequences of opening one window on the internal climate of a room. Report C 448, TNO Inst. for Environmental Hygiene and Health Technology (IMG-TNO), Delft 1980.

[20] Hashemi, M.M., Nikfarjam A., Raji H.: Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes. Microsyst. Technol. 25(2019), 541–549.

[21] Zhang Y., Olofsson T., Nair G., Zhao C., Yang B., Li A.: Cold windows induced airflow effects on the thermal environment for a large single-zone building. E3S Web Conf., 172(2020), 06003.

[22] Murmu R., Kumar P., Singh H.N.: Heat transfer and friction factor correlation for inclined spherical ball roughened solar air heater. Arch. Thermodyn. 41(2020), 2, 3–34.

[23] Roberto R.: Experimental and Numerical Analysis of Heat Transfer and Airflow on an Interactive Building Façade. Univ. Cagliari, Cagliari 2008.

[24] ANSYS Fluent UDF Manual, http://www.ansys.com

[25] Gosselin J., Chen Q.: A computational method for calculating heat transfer and airflow through a dual-airflow window. Energ. Build. 40(2008), 4, 452–458.

[26] Sun H., Zhao L. Zhang Y.: Evaluation of RNG and LES non-isothermal models for indoor airflow using PIV measurement data. T. ASABE 50(2007), 2, 621–631.

[27] Li X., Yan Y., Tu J.: Evaluation of models and methods to simulate thermal radiation in indoor spaces. Build. Environ. 144 (2018), 15, 259–267.

[28] Olesen, B.W. and Brager, G.S.: A better way to predict comfort: The new ASHRAE standard, 55(2004), 204–207.

[29] Patankar S.: Numerical Heat Transfer and Fluid Flow. CRC, Boca Raton 1998.

[30] Sultanov M.M., Arakelyan E.K., Boldyrev I.A., Lunenko V.S., Menshikov P.D.: Digital twin’s application in control systems for distributed generation of heat and electric energy. Arch. Thermodyn. 42(2021), 2, 89–101.

[31] Asif M.A.: A Theoretical Study of the Size Effect of Carbon Nanotubes on the Removal of Water Chemical Contaminants. J. Res. Sci., Eng. Technol. 6(2018), 4, 21–27.

[32] Fuliotto R., Cambuli F., Mandas N., Bacchin N., Manara G., Chen Q.: Experimental and numerical analysis of heat transfer and airflow on an interactive building facade. Energ. Build. 42(2010), 1, 23–28.

[33] Little W.J.: Mollier Diagram for Air. AEDC Arnold Engineering and Development Center, Arnold Afb Tn, 1963.

Przejdź do artykułu
[2] Gulan M., Salaj M., Rohal’-Ilkiv B.: Application of adaptive multivariable Generalized Predictive Control to a HVAC system in real time. Arch. Control Sci. 24(2014), 1, 67–84.

[3] Ilbeigi M., Ghomeishi M., Dehghanbanadaki A.: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 61(2020), 102325.

[4] Awbi H.B.: Air movement in naturally-ventilated buildings. Renew. Energ. 8(1996), 1–4, 241–247.

[5] Stavrakakis G.M., Koukou M.K., Vrachopoulos M.Gr., Markatos N.C.: Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation. Energ. Build. 40(2008), 9, 1666–1681.

[6] Bangalee M.Z.I., Lin S.Y., Miau J.J.: Wind-driven natural ventilation through multiple windows of a building: A computational approach. Energ. Build. 45(2012), 317–325.

[7] Dascalaki E., Santamouris M., Asimakopoulos D.N.: On the use of deterministic and intelligent techniques to predict the air velocity distribution on external openings in single-sided natural ventilation configurations. Sol. Energy. 66(1999), 3, 223–243.

[8] Liu X., Lv X., Peng Z., Shi C.: Experimental study of airflow and pollutant dispersion in cross-ventilated multi-room buildings: Effects of source location and ventilation path. Sustain. Cities Soc. (2020), 52, 101822.

[9] Hu Y., Heiselberg P.K., Guo R.: Ventilation cooling/heating performance of a PCM enhanced ventilated window-an experimental study. Energ. Build. 214(2020), 109903.

[10] Chen Y., Tong Z., Wu W., Samuelson H., Malkawi A., Norford L.: Achieving natural ventilation potential in practice: Control schemes and levels of automation. Appl. Energ. 235(2019), 1, 1141–1152.

[11] Chen J., Brager G.S., Augenbroe G., Song X.: Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Appl. Energ. 235(2019), 1, 673–684.

[12] Goudarzi N., Sheikhshahrokhdehkordi M., Khalesi J., Hosseiniirani S.: Airflow and thermal comfort evaluation of a room with different outlet opening sizes and elevations ventilated by a two-sided wind catcher. J. Build. Eng. 37(2021), 102112.

[13] Park D.Y., Chang S.: Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustain. Cities Soc. 61(2020), 102292.

[14] Tao Y., Zhang H., Zhang L., Zhang G., Tu J., Shi L.: Ventilation performance of a naturally ventilated double-skin façade in buildings. Renew. Energ. 167(2020), 184–198.

[15] Tartarini F., Schiavon S., Cheung T., Hoyt T.: CBE thermal comfort tool: online tool for thermal comfort calculations and visualizations. SoftwareX 12(2020), 100563.

[16] Liu S., Luo Z., Zhang K., Hang J.: Natural ventilation of a small-scale road tunnel by wind catchers: A CFD simulation study. Atmosphere 9(2018), 10, 411.

[17] Aghakhani M., Eslami G.: Thermal comfort assessment of underfloor vs. overhead air distribution system. J. Appl. Sci. 12(2012), 5, 473–479.

[18] Michaux G., Greffet R., Salagnac P., Ridoret J.: Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows. Appl. Energ. 242(2019), 27–45.

[19] Phaff J.C., de Gids W.F., Ton J.A.,. van der Ree D.V., Schijndel L.L.M.: The ventilation of buildings: Investigation of the consequences of opening one window on the internal climate of a room. Report C 448, TNO Inst. for Environmental Hygiene and Health Technology (IMG-TNO), Delft 1980.

[20] Hashemi, M.M., Nikfarjam A., Raji H.: Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes. Microsyst. Technol. 25(2019), 541–549.

[21] Zhang Y., Olofsson T., Nair G., Zhao C., Yang B., Li A.: Cold windows induced airflow effects on the thermal environment for a large single-zone building. E3S Web Conf., 172(2020), 06003.

[22] Murmu R., Kumar P., Singh H.N.: Heat transfer and friction factor correlation for inclined spherical ball roughened solar air heater. Arch. Thermodyn. 41(2020), 2, 3–34.

[23] Roberto R.: Experimental and Numerical Analysis of Heat Transfer and Airflow on an Interactive Building Façade. Univ. Cagliari, Cagliari 2008.

[24] ANSYS Fluent UDF Manual, http://www.ansys.com

[25] Gosselin J., Chen Q.: A computational method for calculating heat transfer and airflow through a dual-airflow window. Energ. Build. 40(2008), 4, 452–458.

[26] Sun H., Zhao L. Zhang Y.: Evaluation of RNG and LES non-isothermal models for indoor airflow using PIV measurement data. T. ASABE 50(2007), 2, 621–631.

[27] Li X., Yan Y., Tu J.: Evaluation of models and methods to simulate thermal radiation in indoor spaces. Build. Environ. 144 (2018), 15, 259–267.

[28] Olesen, B.W. and Brager, G.S.: A better way to predict comfort: The new ASHRAE standard, 55(2004), 204–207.

[29] Patankar S.: Numerical Heat Transfer and Fluid Flow. CRC, Boca Raton 1998.

[30] Sultanov M.M., Arakelyan E.K., Boldyrev I.A., Lunenko V.S., Menshikov P.D.: Digital twin’s application in control systems for distributed generation of heat and electric energy. Arch. Thermodyn. 42(2021), 2, 89–101.

[31] Asif M.A.: A Theoretical Study of the Size Effect of Carbon Nanotubes on the Removal of Water Chemical Contaminants. J. Res. Sci., Eng. Technol. 6(2018), 4, 21–27.

[32] Fuliotto R., Cambuli F., Mandas N., Bacchin N., Manara G., Chen Q.: Experimental and numerical analysis of heat transfer and airflow on an interactive building facade. Energ. Build. 42(2010), 1, 23–28.

[33] Little W.J.: Mollier Diagram for Air. AEDC Arnold Engineering and Development Center, Arnold Afb Tn, 1963.

Słowa kluczowe:
pig slurry
agricultural biogas
Adhesive bed
permeability
CFD

The paper reviews selected methods of agricultural biogas production and characterizes their technical and technological aspects. The conditions of the anaerobic fermentation process in the reactor with adhesive skeleton bed were analyzed. The required technological criteria for the production of biogas from a substrate in the form of pig slurry were indicated. As part of experimental studies, evaluation of the biogas replacement resistance coefficient and the permeability coefficient as a function of the Reynolds number were made. The method of numerical simulation with the use of a tool containing computational fluid dynamics codes was applied. Using the turbulent flow model – the RANS model with the enhanced wall treatment option, a numerical simulation was carried out, allowing for a detailed analysis of hydrodynamic phenomena in the adhesive skeleton bed. The paper presents the experimental and numerical results that allow to understand the fluid flow characteristics for the intensification of agricultural biogas production.

Przejdź do artykułu
[1] Grzegorzewicz J., Gruszecki Z., Sciezynski H., Cieslak R., Smaga M., Jurkowski A., Matyja K., Papuga W.: Bubble Reactor. Patent Office of the Republic of Poland. Patent Application P.174663, 1994 (in Polish).

[2] http://pfee.de/en/cellroll/ (accessed 15 Apr. 2018).

[3] http://www.ows.be/household_waste/dranco/ (accessed 15 Apr. 2018).

[4] https://www.hz-inova.com/hitachi-zosen-inova-doubles-up-with-contract-forsecond-kompogas-plant-in-peloponnese-region/ (accessed 12 May 2018).

[5] http://www.valorgainternational.fr/en/mpg3-128079–VALORGA-SANAEROBIC-DIGESTION-PROCESS.html (accessed 12 May 2018).

[6] Oniszk-Popławska A., Matyka M.: Final report on the field research. “Comprehensive assessment of the conditions for biogas production in the Lubelskie Voivodeship”. Regional Economic Change Management System, 2012 (in Polish).

[7] Jedrczak A.: Biological waste treatment. Przeglad Komunalny (2001), 6, 89–92 (in Polish). [8] Wałowski G.: Developing technique anaerobic digestion in the contex of renewable energy sources. In: Proc. 26th Eur. Biomass Conf., Copenhagen, 14-17 May 2018, 798–808

[9] Kowalczyk-Jusko A.: Biogas plants an opportunity for agriculture and the environment. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, 2013 (in Polish).

[10] Głodek E.: Report on the EU project POKL.08.02.01-16-028 / 09 Sources of Energy in the Opole region 2013 promotion, technologies, support, implementation. Institute of Ceramics and Building Materials, Opole 2010. (in Polish).

[11] den Boer E., Szpadt R.: Biogas plants as an opportunity for agriculture and the environment]. In: Proc. Conf. on 24 Oct. 2013, Dolnoslaski Osrodek Doradztwa Rolniczego we Wrocławiu (in Polish).

[12] Karłowski J., Kliber A., Myczko A., Golimowska R., Myczko R.: Agronomy in the sustainable development of modern agriculture]. In: Proc. 4th Sci. Conf. of the Polish Agronomic Society, Warszawa, 5-7 Sept. 2011 (in Polish).

[13] Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M.: Construction and Operation of Agricultural Biogas Plants. Wyd. ITP, Warszawa Poznan 2011.

[14] Kołodziejczyk T., Myczko R., Myczko A.: Use of residual non-food cellulosic material for biogas production. Ciepłownictwo, Ogrzewanictwo, Wentylacja 42(2011), 9, 360–363. (in Polish).

[15] Wałowski G.: Interpretation of the mechanism of biogas flow through an adhesive bed in analogy to gas-permeability for a structural model of a porous material. Int. J. Curr. Res. 10(2018), 12, 76225–76228.

[16] Wałowski G.: Multi-phase flow assessment for the fermentation process in monosubstrate reactor with skeleton bed. J. Water Land Dev. 42(2019), 7-9, 150–156.

[17] Myczko A., Kliber A., Tupalski L.: The latest achievements in the field of renewable energy sources along with the presentation of barriers to the implementation of research results into business practice. In: The Latest Developments in the Field of RES, Including the Presentation of Barriers to the Implementation of Research Results in Business Practice and Suggestions for their Solutions (B. Mickiewicz, Ed.), Koszalin 2012 (in Polish).

[18] Wałowski G., Borek, K. Romaniuk W., Wardal W.J., Borusewicz A.: Modern Systems of Obtaining Energy – Biogas. Wydawnictwo Wyzszej Szkoły Agrobiznesu w Łomzy, Łomza 2019 (in Polish).

[19] Strzelecki T., Kostecki S., Zak S.: Modelling of flows through porous media. Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, 2008. (in Polish).

[20] https://www.ansys.com/products/fluids/ansys-fluent (accessed 15 Apr. 2018).

Przejdź do artykułu
[2] http://pfee.de/en/cellroll/ (accessed 15 Apr. 2018).

[3] http://www.ows.be/household_waste/dranco/ (accessed 15 Apr. 2018).

[4] https://www.hz-inova.com/hitachi-zosen-inova-doubles-up-with-contract-forsecond-kompogas-plant-in-peloponnese-region/ (accessed 12 May 2018).

[5] http://www.valorgainternational.fr/en/mpg3-128079–VALORGA-SANAEROBIC-DIGESTION-PROCESS.html (accessed 12 May 2018).

[6] Oniszk-Popławska A., Matyka M.: Final report on the field research. “Comprehensive assessment of the conditions for biogas production in the Lubelskie Voivodeship”. Regional Economic Change Management System, 2012 (in Polish).

[7] Jedrczak A.: Biological waste treatment. Przeglad Komunalny (2001), 6, 89–92 (in Polish). [8] Wałowski G.: Developing technique anaerobic digestion in the contex of renewable energy sources. In: Proc. 26th Eur. Biomass Conf., Copenhagen, 14-17 May 2018, 798–808

[9] Kowalczyk-Jusko A.: Biogas plants an opportunity for agriculture and the environment. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, 2013 (in Polish).

[10] Głodek E.: Report on the EU project POKL.08.02.01-16-028 / 09 Sources of Energy in the Opole region 2013 promotion, technologies, support, implementation. Institute of Ceramics and Building Materials, Opole 2010. (in Polish).

[11] den Boer E., Szpadt R.: Biogas plants as an opportunity for agriculture and the environment]. In: Proc. Conf. on 24 Oct. 2013, Dolnoslaski Osrodek Doradztwa Rolniczego we Wrocławiu (in Polish).

[12] Karłowski J., Kliber A., Myczko A., Golimowska R., Myczko R.: Agronomy in the sustainable development of modern agriculture]. In: Proc. 4th Sci. Conf. of the Polish Agronomic Society, Warszawa, 5-7 Sept. 2011 (in Polish).

[13] Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M.: Construction and Operation of Agricultural Biogas Plants. Wyd. ITP, Warszawa Poznan 2011.

[14] Kołodziejczyk T., Myczko R., Myczko A.: Use of residual non-food cellulosic material for biogas production. Ciepłownictwo, Ogrzewanictwo, Wentylacja 42(2011), 9, 360–363. (in Polish).

[15] Wałowski G.: Interpretation of the mechanism of biogas flow through an adhesive bed in analogy to gas-permeability for a structural model of a porous material. Int. J. Curr. Res. 10(2018), 12, 76225–76228.

[16] Wałowski G.: Multi-phase flow assessment for the fermentation process in monosubstrate reactor with skeleton bed. J. Water Land Dev. 42(2019), 7-9, 150–156.

[17] Myczko A., Kliber A., Tupalski L.: The latest achievements in the field of renewable energy sources along with the presentation of barriers to the implementation of research results into business practice. In: The Latest Developments in the Field of RES, Including the Presentation of Barriers to the Implementation of Research Results in Business Practice and Suggestions for their Solutions (B. Mickiewicz, Ed.), Koszalin 2012 (in Polish).

[18] Wałowski G., Borek, K. Romaniuk W., Wardal W.J., Borusewicz A.: Modern Systems of Obtaining Energy – Biogas. Wydawnictwo Wyzszej Szkoły Agrobiznesu w Łomzy, Łomza 2019 (in Polish).

[19] Strzelecki T., Kostecki S., Zak S.: Modelling of flows through porous media. Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, 2008. (in Polish).

[20] https://www.ansys.com/products/fluids/ansys-fluent (accessed 15 Apr. 2018).

13
Design and computational fluid dynamics analysis of the last stage of innovative gas-steam turbine

Słowa kluczowe:
Axial turbine
Blade design
Computational Fluid Dynamics
Last stage oflow-pressure
Twisted blade

Research regarding blade design and analysis of flow has been attracting interest for over a century. Meanwhile new concepts and design approaches were created and improved. Advancements in information technologies allowed to introduce computational fluid dynamics and computational flow mechanics. Currently a combination of mentioned methods is used for the design of turbine blades. These methods enabled us to improve flow efficiency and strength of turbine blades. This paper relates to a new type turbine which is in the phase of theoretical analysis, because the working fluid is a mixture of steam and gas generated in a wet combustion chamber. The main aim of this paper is to design and analyze the flow characteristics of the last stage of gas-steam turbine. When creating the spatial model, the atlas of profiles of reaction turbine steps was used. Results of computational fluid dynamics simulations of twisting of the last stage are presented. Blades geometry and the computational mesh are also presented. Velocity vectors, for selected dividing sections that the velocity along the pitch diameter varies greatly. The blade has the shape of its cross-section similar to action type blades near the root and to reaction type blades near the tip. Velocity fields and pressure fields show the flow characteristics of the last stage of gas-steam turbine. The net efficiency of the cycle is equal to 52.61%.

Przejdź do artykułu
[1] Szewalski R.: Rational Blade Height Calculation in Action Turbines. Czasopismo Techniczne (1930), 1, 83–86 (in Polish).

[2] Szewalski R.: A novel design of turbine blading of extreme length. Trans. Inst. Fluid-Flow Mach. 70–72(1976) 137–143.

[3] Szewalski R.: Present Problems of Power Engineering Development. Increase of Unit Power and Efficiency of Turbines and Power Palnts. Ossolineum, Wrocław Warszawa Kraków Gdansk 1978 (in Polsih).

[4] Gardzilewicz A., Swirydczuk J., Badur J., Karcz M., Werner R., Szyrejko C.: Methodology of CFD computations applied for analyzing flows through steam turbine exhaust hoods. Trans. Inst. Fluid-Flow Mach. 113(2003), 157–168.

[5] Knitter D., Badur J.: Coupled 0D and 3D analyzis of axial force actiong on regulation stage during unsteady work. Systems 13(2008), 1/2 Spec. Issu., 244–262 (in Polsih).

[6] Knitter D.: Adaptation of inlet and outlet of turbine for new working conditions. PhD dissertation, Inst. Fluid Flow Mach. Pol. Ac. Sci., Gdansk, 2008 (in Polish).

[7] Ziółkowski P.: Thermodynamic analysis of low emission gas-steam cycles with oxy combustion. PhD dissertation, Inst. of Fluid Flow Mach. Pol. Ac. Sci., Gdansk 2018 (in Polish).

[8] Ziółkowski P., Badur J.: A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion. In: Proc. 32nd Int.Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS, Wroclaw, 2019 (W. Stanek, P. Gładysz, S. Werle, W. Adamczyk, Eds.), 1557–1568.

[9] Rubechini F., Marconcini M., Arnone A., Stefano C., Daccà F.: Some aspects of CFD modelling in the análisis of a low-pressure steam turbine. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Montrèal, May, 14–17 2007, GT2007- 27235.

[10] Fiaschi D., Manfrida G., Maraschiello F.: Design and performance prediction of radial ORC turboexpanders. Appl. Energ. 138(2015), 517–532.

[11] Fiaschi D., Innocenti G., Manfrida G., Maraschiello F.: Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 99(2016), 402–410.

[12] Noori Rahim Abadi M.A., Ahmadpour A., Abadi S.M.N.R., Meyer J.P.: CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl. Therm. Eng. 112(2017), 1575–1589.

[13] Tanuma T., Okuda H., Hashimoto G., Yamamoto S., Shibukawa N., Okuno K., Saeki H., Tsukuda T.: Aerodynamic and structural numerical investigation of unsteady flow effects on last stage blades. In: Microturbines, Turbochargers and Small Turbomachines, Steam Turbine, Proc. ASME Turbo Expo, Montrèal, June 15–19, 2015, GT2015-43848.

[14] Tanuma T.: Development of last-stage long blades for steam turbines. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 279–305.

[15] Klonowicz P., Witanowski Ł., Suchocki T., Jedrzejewski Ł., Lampart P.: Selection of optimum degree of partial admission in a laboratory organic vapour microturbine. Energ. Convers. Manage. 202(2019), 112189.

[16] Witanowski Ł., Klonowicz P., Lampart P., Suchocki T., Jedrzejewski Ł., Zaniewski D., Klimaszewski P.: Optimization of an axial turbine for a small scale ORC waste heat recovery system. Energy 205(2020), 118059.

[17] Zaniewski D., Klimaszewski P., Witanowski Ł., Jedrzejewski Ł., Klonowicz P., Lampart P.: Comparison of an impulse and a reaction turbine stage for an ORC power plant. Arch. Thermodyn. 40(2019), 3, 137–157

[18] Touil K., Ghenaiet A.: Characterization of vane-blade interactions in two-stage axial turbine. Energy 172(2019), 1291–1311.

[19] Zhang L.Y., He L., Stuer H.: A numerical investigation of rotating instability in steam turbine last stage. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Vancouver, June 6–10, 2011, GT2011-46073, 1657–1666.

[20] Butterweck A., Głuch J.: Neural network simulator’s application to reference performance determination of turbine blading in the heat-flow diagnostics. In: Intelligent Systems in Technica and Medical Diagnostics (J. Korbicz, M. Kowal, Eds.), Advances in Intelligent Systems and Computing, Vol. 230. Springer, Berlin Heidelberg 2014, 137–147.

[21] Głuch J. Drosinska-Komor M.: Neural Modelling of Steam Turbine Control Stage. In: Advances in Diagnostics of Processes and Systems (J. Korbicz, K. Patan, M. Luzar, Eds.), Studies in Systems, Decision and Control, Vol. 313. Springer, 2021, 117–128.

[22] Głuch J., Krzyzanowski J.: Application of preprocessed classifier type neural network for searching of faulty components of power cycles in case of incomplete measurement data. In: Power for Land, Sea, and Air, Proceed. ASME Turbo Expo, Amsterdam, June 3–6, 2002, GT2002-30028, 83–91.

[23] Badur J., Kornet D., Sławinski D., Ziółkowski P.: Analysis of unsteady flow forces acting on the thermowell in a steam turbine control stage. J. Phys.: Conf. Ser. 760(2016), 012001.

[24] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159–180.

[25] Ziółkowski P., Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure – Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.

[26] Głuch S., Piwowarski M.: Enhanced master cycle – significant improvement of steam rankine cycle. In: Proc. 25th Int. Conf. Engineering Mechanics 2019, Vol. 25 (I. Zolotarev, V. Radolf, Eds.), Svratk,13–16 May, 2019, 125–128.

[27] Kowalczyk T., Badur J., Ziółkowski P.: Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluidflow machinery main dimensions, and partial loads. Energy 206(2020), 118072.

[28] Perycz S.: Steam and Gas Turbines. Wyd. Polit. Gdanskiej, Gdansk 1988 (in Polish).

[29] https://www.ansys.com/products/fluids/ansys-cfx (accessed 15 Jan. 2021).

[30] Menter F.R., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. In: Proc. 4th Int. Symp.on Turbulence, Heat and Mass Transfer (K. Hajalic, Y. Nagano, M. Tummers, Eds.). Begell House, West Redding 2003, 625–632.

[31] Lemmon E. W., Huber M. L. & McLinden M.O.: NIST Standard Reference Database 23. In: Reference Fluid Thermodynamic and Transport Properties- REFPROP, Version 8.0, User’s Guide, Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg 2010.

[32] Wilcox D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada 1998.

[33] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P.J., Stajnke M., Badur J.: Thermal-FSI modelling of flow and heat transfer in a heat exchanger based on minichannels. J. Power Technol. 97(2017), 5, 373–381.

[34] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 3, 65–87.

Przejdź do artykułu
[2] Szewalski R.: A novel design of turbine blading of extreme length. Trans. Inst. Fluid-Flow Mach. 70–72(1976) 137–143.

[3] Szewalski R.: Present Problems of Power Engineering Development. Increase of Unit Power and Efficiency of Turbines and Power Palnts. Ossolineum, Wrocław Warszawa Kraków Gdansk 1978 (in Polsih).

[4] Gardzilewicz A., Swirydczuk J., Badur J., Karcz M., Werner R., Szyrejko C.: Methodology of CFD computations applied for analyzing flows through steam turbine exhaust hoods. Trans. Inst. Fluid-Flow Mach. 113(2003), 157–168.

[5] Knitter D., Badur J.: Coupled 0D and 3D analyzis of axial force actiong on regulation stage during unsteady work. Systems 13(2008), 1/2 Spec. Issu., 244–262 (in Polsih).

[6] Knitter D.: Adaptation of inlet and outlet of turbine for new working conditions. PhD dissertation, Inst. Fluid Flow Mach. Pol. Ac. Sci., Gdansk, 2008 (in Polish).

[7] Ziółkowski P.: Thermodynamic analysis of low emission gas-steam cycles with oxy combustion. PhD dissertation, Inst. of Fluid Flow Mach. Pol. Ac. Sci., Gdansk 2018 (in Polish).

[8] Ziółkowski P., Badur J.: A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion. In: Proc. 32nd Int.Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS, Wroclaw, 2019 (W. Stanek, P. Gładysz, S. Werle, W. Adamczyk, Eds.), 1557–1568.

[9] Rubechini F., Marconcini M., Arnone A., Stefano C., Daccà F.: Some aspects of CFD modelling in the análisis of a low-pressure steam turbine. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Montrèal, May, 14–17 2007, GT2007- 27235.

[10] Fiaschi D., Manfrida G., Maraschiello F.: Design and performance prediction of radial ORC turboexpanders. Appl. Energ. 138(2015), 517–532.

[11] Fiaschi D., Innocenti G., Manfrida G., Maraschiello F.: Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 99(2016), 402–410.

[12] Noori Rahim Abadi M.A., Ahmadpour A., Abadi S.M.N.R., Meyer J.P.: CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl. Therm. Eng. 112(2017), 1575–1589.

[13] Tanuma T., Okuda H., Hashimoto G., Yamamoto S., Shibukawa N., Okuno K., Saeki H., Tsukuda T.: Aerodynamic and structural numerical investigation of unsteady flow effects on last stage blades. In: Microturbines, Turbochargers and Small Turbomachines, Steam Turbine, Proc. ASME Turbo Expo, Montrèal, June 15–19, 2015, GT2015-43848.

[14] Tanuma T.: Development of last-stage long blades for steam turbines. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 279–305.

[15] Klonowicz P., Witanowski Ł., Suchocki T., Jedrzejewski Ł., Lampart P.: Selection of optimum degree of partial admission in a laboratory organic vapour microturbine. Energ. Convers. Manage. 202(2019), 112189.

[16] Witanowski Ł., Klonowicz P., Lampart P., Suchocki T., Jedrzejewski Ł., Zaniewski D., Klimaszewski P.: Optimization of an axial turbine for a small scale ORC waste heat recovery system. Energy 205(2020), 118059.

[17] Zaniewski D., Klimaszewski P., Witanowski Ł., Jedrzejewski Ł., Klonowicz P., Lampart P.: Comparison of an impulse and a reaction turbine stage for an ORC power plant. Arch. Thermodyn. 40(2019), 3, 137–157

[18] Touil K., Ghenaiet A.: Characterization of vane-blade interactions in two-stage axial turbine. Energy 172(2019), 1291–1311.

[19] Zhang L.Y., He L., Stuer H.: A numerical investigation of rotating instability in steam turbine last stage. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Vancouver, June 6–10, 2011, GT2011-46073, 1657–1666.

[20] Butterweck A., Głuch J.: Neural network simulator’s application to reference performance determination of turbine blading in the heat-flow diagnostics. In: Intelligent Systems in Technica and Medical Diagnostics (J. Korbicz, M. Kowal, Eds.), Advances in Intelligent Systems and Computing, Vol. 230. Springer, Berlin Heidelberg 2014, 137–147.

[21] Głuch J. Drosinska-Komor M.: Neural Modelling of Steam Turbine Control Stage. In: Advances in Diagnostics of Processes and Systems (J. Korbicz, K. Patan, M. Luzar, Eds.), Studies in Systems, Decision and Control, Vol. 313. Springer, 2021, 117–128.

[22] Głuch J., Krzyzanowski J.: Application of preprocessed classifier type neural network for searching of faulty components of power cycles in case of incomplete measurement data. In: Power for Land, Sea, and Air, Proceed. ASME Turbo Expo, Amsterdam, June 3–6, 2002, GT2002-30028, 83–91.

[23] Badur J., Kornet D., Sławinski D., Ziółkowski P.: Analysis of unsteady flow forces acting on the thermowell in a steam turbine control stage. J. Phys.: Conf. Ser. 760(2016), 012001.

[24] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159–180.

[25] Ziółkowski P., Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure – Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.

[26] Głuch S., Piwowarski M.: Enhanced master cycle – significant improvement of steam rankine cycle. In: Proc. 25th Int. Conf. Engineering Mechanics 2019, Vol. 25 (I. Zolotarev, V. Radolf, Eds.), Svratk,13–16 May, 2019, 125–128.

[27] Kowalczyk T., Badur J., Ziółkowski P.: Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluidflow machinery main dimensions, and partial loads. Energy 206(2020), 118072.

[28] Perycz S.: Steam and Gas Turbines. Wyd. Polit. Gdanskiej, Gdansk 1988 (in Polish).

[29] https://www.ansys.com/products/fluids/ansys-cfx (accessed 15 Jan. 2021).

[30] Menter F.R., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. In: Proc. 4th Int. Symp.on Turbulence, Heat and Mass Transfer (K. Hajalic, Y. Nagano, M. Tummers, Eds.). Begell House, West Redding 2003, 625–632.

[31] Lemmon E. W., Huber M. L. & McLinden M.O.: NIST Standard Reference Database 23. In: Reference Fluid Thermodynamic and Transport Properties- REFPROP, Version 8.0, User’s Guide, Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg 2010.

[32] Wilcox D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada 1998.

[33] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P.J., Stajnke M., Badur J.: Thermal-FSI modelling of flow and heat transfer in a heat exchanger based on minichannels. J. Power Technol. 97(2017), 5, 373–381.

[34] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 3, 65–87.

14
Refined multi-phase-lags theory and Thomson effect on a micropolar thermoelastic medium with voids

Słowa kluczowe:
Micropolar
Voids
Refined-phase-lags theory
Thomson effect
Normal mode analysis

The problem considered is that of an isotropic, micropolar thermoelastic medium with voids subjected to the Thomson effect. The solution to the problem is presented in the context of the refined multiphase- lags theory of thermoelasticity. The normal mode analysis was used to obtain the analytical expressions of the considered variables. The nondimensional displacement, temperature, microrotation, the change in the volume fraction field and stress of the material are obtained and illustrated graphically. The variations of these quantities have been depicted graphically in the refined-phase-lag theory, Green and Naghdi theory of type II, Lord and Shulman theory and a coupled theory. The effects of the Thomson parameter and phase lag parameters on a homogeneous, isotropic, micropolar thermoelastic material with voids are revealed and discussed. Some particular cases of interest are deduced from the present investigation.

Przejdź do artykułu
[1] Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 7(1956), 3, 240–253.

[2] Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Sol. 15(1967), 5, 299–309.

[3] Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2(1972), 1, 1–7.

[4] Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermosmechanics. Proc. R. Soc. Lond. A 432(1991), 1885, 171–194.

[5] Green A.E., Naghdi P.M.: On undamped heat wave in elastic solids. J. Therm. Stress. 15(1992), 2, 253–264.

[6] Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(1993), 189–209.

[7] Tzou D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Trans. 38(1995), 17, 3231–3240.

[8] Tzou D.Y.: A unified field approach for heat conduction from macro- to microscales. J. Heat Trans. 117(1995), 1, 8–16.

[9] Roy Choudhuri S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(2007), 3, 231–238.

[10] Eringen A.C.: Linear theory of micropolar elasticity. ONR Techn. Rep. 29 (School of Aeronautics, Aeronautics and Engineering Science), Purdue Univ., West Lafayett 1965.

[11] Eringen A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4(1966), 2, 179–202.

[12] Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(1966), 6, 909–924.

[13] Nowacki W.: Couple stresses in the theory of thermoelasticity III. Bull. Acad. Pol. Sci. Tech. Ser. Sci. Tech. 14(1966), 8, 801–809.

[14] Tauchert T.R., Claus Jr. W.D., Ariman T.: The linear theory of micropolar thermo- elasticity. Int. J. Eng. Sci. 6(1968), 1, 36–47.

[15] Nowacki W., Olszak W. (Eds.): Micropolar Thermoelasticity. CISM Courses and Lectures 151, Springer-Verlag, Vienna 1974.

[16] Dhaliwal R.S., Singh A.: Micropolar thermoelasticity. In: Thermal Stresses II (R.B. Hetnarski, Ed.), Elsevier, Amsterdam 1987.

[17] Marin M., Nicaise S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28(2016), 6, 1645–1657.

[18] Marin M., Ellahi R., Chirila A.: On solutions of Saint–Venant’S problem for elastic dipolar bodies with voids. Carpathian J. Math. 33(2017), 2, 219–232.

[19] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can. J. Phys. 92(2014), 2, 148–159.

[20] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: The influence of thermal loading due to laser pulse on generalized micropolar thermoelastic solid with comparison of different theories. Multi. Model. Mater. Struct. 10(2014), 3, 328–345.

[21] Chandrasekharaiah D.S.: Heat flux dependent micropolar thermoelasticity. Int. J. Eng. Sci. 24(1986), 8, 1389–1395.

[22] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: Effect of rotation and initial stresses on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(2015), 9, 2030–2040.

[23] Othman M.I.A., Abed-Elaziz E.M.: Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with dual-phase-lag model. Microsyst. Tech. 23(2017), 10, 4979–4987.

[24] Othman M.I.A., Abd-alla A.N., Abed-Elaziz E.M.: Effect of heat laser pulse on wave propagation of generalized thermoelastic micropolar medium with energy dissipation. Ind. J. Phys. 94(2020), 3, 309–317.

[25] Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13(1983), 2, 125–147.

[26] Othman M.I.A., Abed–Elaziz E.M.: The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual-phase-lag model. J. Therm. Stress. 38(2015), 9, 1068–1082.

[27] Abd-Elaziz E.M., Othman M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermoelastic porous medium with energy dissipation. ZAMM-Z. Angew. Math. Me. 99(2019), 8, 201900079.

[28] Abd-Elaziz E.M., Marin M., Othman M.I.A.: On the effect of Thomson and initial stress in a thermos-porous elastic solid under G-N electromagnetic theory. Symmetry. 11(2019), 3, 413–430.

[29] Othman M.I.A., Marin M.: Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory. Results Phys. 7(2017), 3863–3872.

[30] Othman M.I.A, Abd-Elaziz E.M.: Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation. Results Phys. 7(2017), 4253–4263.

[31] Othman M.I.A., Tantawi R.S., Eraki E.E.M.: Effect of rotation on a semi conducting medium with two-temperature under L–S theory. Arch. Thermodyn. 38(2017), 2, 101–122.

[32] Chirita S., Ciarletta M., Tibullo V.: On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Tran. 114(2017), 277–285.

[33] https://matlab.mathworks.com/ (accessed 17 Feb. 2021)

Przejdź do artykułu
[2] Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Sol. 15(1967), 5, 299–309.

[3] Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2(1972), 1, 1–7.

[4] Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermosmechanics. Proc. R. Soc. Lond. A 432(1991), 1885, 171–194.

[5] Green A.E., Naghdi P.M.: On undamped heat wave in elastic solids. J. Therm. Stress. 15(1992), 2, 253–264.

[6] Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(1993), 189–209.

[7] Tzou D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Trans. 38(1995), 17, 3231–3240.

[8] Tzou D.Y.: A unified field approach for heat conduction from macro- to microscales. J. Heat Trans. 117(1995), 1, 8–16.

[9] Roy Choudhuri S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(2007), 3, 231–238.

[10] Eringen A.C.: Linear theory of micropolar elasticity. ONR Techn. Rep. 29 (School of Aeronautics, Aeronautics and Engineering Science), Purdue Univ., West Lafayett 1965.

[11] Eringen A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4(1966), 2, 179–202.

[12] Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(1966), 6, 909–924.

[13] Nowacki W.: Couple stresses in the theory of thermoelasticity III. Bull. Acad. Pol. Sci. Tech. Ser. Sci. Tech. 14(1966), 8, 801–809.

[14] Tauchert T.R., Claus Jr. W.D., Ariman T.: The linear theory of micropolar thermo- elasticity. Int. J. Eng. Sci. 6(1968), 1, 36–47.

[15] Nowacki W., Olszak W. (Eds.): Micropolar Thermoelasticity. CISM Courses and Lectures 151, Springer-Verlag, Vienna 1974.

[16] Dhaliwal R.S., Singh A.: Micropolar thermoelasticity. In: Thermal Stresses II (R.B. Hetnarski, Ed.), Elsevier, Amsterdam 1987.

[17] Marin M., Nicaise S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28(2016), 6, 1645–1657.

[18] Marin M., Ellahi R., Chirila A.: On solutions of Saint–Venant’S problem for elastic dipolar bodies with voids. Carpathian J. Math. 33(2017), 2, 219–232.

[19] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can. J. Phys. 92(2014), 2, 148–159.

[20] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: The influence of thermal loading due to laser pulse on generalized micropolar thermoelastic solid with comparison of different theories. Multi. Model. Mater. Struct. 10(2014), 3, 328–345.

[21] Chandrasekharaiah D.S.: Heat flux dependent micropolar thermoelasticity. Int. J. Eng. Sci. 24(1986), 8, 1389–1395.

[22] Othman M.I.A., Hasona W.M., Abed-Elaziz E.M.: Effect of rotation and initial stresses on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(2015), 9, 2030–2040.

[23] Othman M.I.A., Abed-Elaziz E.M.: Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with dual-phase-lag model. Microsyst. Tech. 23(2017), 10, 4979–4987.

[24] Othman M.I.A., Abd-alla A.N., Abed-Elaziz E.M.: Effect of heat laser pulse on wave propagation of generalized thermoelastic micropolar medium with energy dissipation. Ind. J. Phys. 94(2020), 3, 309–317.

[25] Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13(1983), 2, 125–147.

[26] Othman M.I.A., Abed–Elaziz E.M.: The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual-phase-lag model. J. Therm. Stress. 38(2015), 9, 1068–1082.

[27] Abd-Elaziz E.M., Othman M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermoelastic porous medium with energy dissipation. ZAMM-Z. Angew. Math. Me. 99(2019), 8, 201900079.

[28] Abd-Elaziz E.M., Marin M., Othman M.I.A.: On the effect of Thomson and initial stress in a thermos-porous elastic solid under G-N electromagnetic theory. Symmetry. 11(2019), 3, 413–430.

[29] Othman M.I.A., Marin M.: Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory. Results Phys. 7(2017), 3863–3872.

[30] Othman M.I.A, Abd-Elaziz E.M.: Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation. Results Phys. 7(2017), 4253–4263.

[31] Othman M.I.A., Tantawi R.S., Eraki E.E.M.: Effect of rotation on a semi conducting medium with two-temperature under L–S theory. Arch. Thermodyn. 38(2017), 2, 101–122.

[32] Chirita S., Ciarletta M., Tibullo V.: On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Tran. 114(2017), 277–285.

[33] https://matlab.mathworks.com/ (accessed 17 Feb. 2021)

• full title of the paper,

• full list of authors with affiliations,

• e-mail address of the authors,

• contact address and telephone numbers of the corresponding author.

The cover letter should explicitly state that the manuscript has not been previously published in any language anywhere and that it is not under simultaneous consideration or in press by another journal.

Manuscripts that have been previously rejected, or withdrawn after being returned for modification, may be resubmitted if the major criticisms have been addressed. The cover letter must state that the manuscript is a resubmission, and the former manuscript number should be provided.

All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

1. The manuscript should be written in very good English, using the two-column format provided in the template.

2. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract and Keywords.

3. More important symbols used in the paper should be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:

u – velocity, m/s

v – specific volume, m/kg etc.

The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités). In the template a dedicated area is created to put the nomenclature.

4. All abbreviations should be spelled out first time they are introduced in the text. Abbreviations should also be listed in the Nomenclature.

5. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the column.

6. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

7. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

8. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

9. The figures should also be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm.

10. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

The references should be placed after the acknowledgment section. The references citation in the manuscript body should be numbered: [1], [2], etc. Please use the following style of references in bibliography APA – 7th ed:

Journal citation (APA – 7th ed):

[1] Król, J., & Ocłoń, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.

doi.org/10.1016/j.enconman.2019.05.090

[2] Zhou, Y., Bi, H., & Wang, H. (2023). Influence of the primary components of the high-speed train on fire heat release rate. Archives of Thermodynamics, 44(1), 37–61.

doi.org/10.24425/ather.2023.145876

When citing scientific papers, it is needed to provide a DOI identifier if available.

Example of citation:

• Król and Ocłoń [1] studied a hybrid CHP sensitivity on fuel and CO2 emission allowances price change.

• Zhou et al. [2] studied the influence of the primary components of the high speed train on fire heat release rate.

Book citation (APA – 7th ed):

[3] Ocłoń, P. (2021). Renewable energy utilization using underground energy systems (1st ed.). Springer Nature.

Example of citation:

• Ocłoń et al. [3] presented renewable energy systems for heating cooling and electrical energy production in buildings.

Book chapter citation (APA – 7th ed):

[4] Ciałkowski, M., & Frąckowiak, A. (2014). Boundary element method in inverse heat conduction problem. In Encyclopedia of Thermal Stresses (pp. 424–433). Springer Netherlands.

Example of citation:

• Ciałkowski and Frąckowiak [4] presented a Boundary element method application for solving inverse heat conduction problems.

Conference proceedings (APA – 7th ed):

[5] Pourghasemi, B., & Fathi, N. (2023). Validation and verification analyses of turbulent forced convection of Na and NaK in miniature heat sinks. ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium, 17-19 May, Baltimore, USA.

Example of citation:

• Pourghasemi and Fathi [5] validated and verified turbulent forced convection of Na and NaK in miniature heat sinks.

For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference. Authors are responsible for ensuring that the information in each reference is complete and accurate, including the DOI number.

11. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication. When the Editors or Reviewers assess that the writing English of the manuscript is poor, the authors are obliged to correct it, and provide a Certificate of English Editing as attachment in Editorial System.

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.

All papers are published under lincense CC BY 4.0. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors.